智能优化算法:海鸥优化算法-附代码

智能优化算法:海鸥优化算法-附代码2019智能算法:海鸥优化算法-附代码摘要:本文简单介绍智能优化算法-海鸥优化算法1.原理海鸥是遍布全球的海鸟,海鸥种类繁多且大小和身长各不相同。海鸥是杂食动物,吃昆虫、鱼、爬行动物、两栖动物和蚯蚓等。大多数海鸥的身体覆盖着白色的羽毛,经常用面包屑来吸引鱼群,用脚发出雨水落下的声音来吸引藏在地下的蚯蚓。海鸥可以喝淡水和盐水,通过眼睛上方的一对特殊腺体,将盐从它们的体内排出。海鸥以群居式生活,利用智慧来寻找和攻击猎物。海鸥最重要特征是迁徙和攻击行为,迁徙是动物从一个地方到另一个地方根据季节更替

大家好,又见面了,我是你们的朋友全栈君。

2019智能优化算法:海鸥优化算法-附代码

摘要:本文简单介绍智能优化算法-海鸥优化算法[1][2]

1.原理

海鸥是遍布全球的海鸟,海鸥种类繁多且大小和身长各不相同。 海鸥是杂食动物,吃昆虫、鱼、爬行动物、两栖动物和蚯蚓等。 大多数海鸥的身体覆盖着白色的羽毛,经常用面包屑来吸引鱼群, 用脚发出雨水落下的声音来吸引藏在地下的蚯蚓。海鸥可以喝淡水和盐水,通过眼睛上方的一对特殊腺体,将盐从它们的体内排出。 海鸥以群居式生活,利用智慧来寻找和攻击猎物。 海鸥最重要特征是迁徙和攻击行为,迁徙是动物从一个地方到另一个地方根据季节更替而移动,寻找最丰富的食物来源以便获取足够能量。在迁移期间,动物成群结队地出行。迁徙时每只海鸥的所在位置不同,以避免相互碰撞。 在一个群体中,海鸥可以朝着最佳位置的方向前进,改变自身所在的位置。海鸥经常会攻击候鸟,在进攻时海鸥群体做出螺旋形的运动形态(如图1)。在这里插入图片描述

​ 图1.海鸥迁徙和攻击方式示意图

2.SOA算法

1.迁徙 ( 全局搜索 )

在迁移过程中, 算法模拟海鸥群如何从一个位置移动到另一个位置。 在这个阶段,海鸥应该满足三个条件:避免碰撞:为了避免与邻居 ( 其他海鸥 ) 碰撞,算法采用附加变量 A 计算海鸥的新位置。
C s ( t ) = A ∗ P s ( t ) C_{s}(t) = A*P_{s}(t) Cs(t)=APs(t)
C s ( t ) C_{s}(t) Cs(t)表示不与其他海鸥存在位置冲突的新位置, P s ( t ) P_{s}(t) Ps(t)海鸥当前位置, t 表示当前迭代, A 表示海鸥在给定搜索空间中的运动行为。
A = f c − ( t ∗ ( f c / M a x i t e r a t i o n ) ) A = f_{c}-(t*(f_{c}/Max_{iteration})) A=fc(t(fc/Maxiteration))
f c f_{c} fc可以控制变量 A 的频率,它的值从 2 线性降低到 0 。

最佳位置方向:在避免了与其他海鸥的位置重合之后,海鸥会向最佳位置所在的方向移动。
M s ( t ) = B ∗ ( P b s ( t ) − P s ( t ) ) M_{s}(t)=B*(P_{bs}(t)-P_{s}(t)) Ms(t)=B(Pbs(t)Ps(t))
M s ( t ) M_{s}(t) Ms(t)表示最佳位置所在的方向, B 是负责平衡全局和局部
搜索的随机数。
B = 2 ∗ A 2 ∗ r d B=2*A^{2}*r_{d} B=2A2rd
r d r_{d} rd是 [0 , 1] 范围内的随机数。

靠近最佳位置 : 海鸥移动到不与其他海鸥相撞的位置后,就
向着最佳位置的所在方向进行移动,到达新的位置。
D s ( t ) = ∣ C s ( t ) + M s ( t ) ∣ D_{s}(t)=|C_{s}(t)+M_{s}(t)| Ds(t)=Cs(t)+Ms(t)
D s ( t ) D_{s}(t) Ds(t)是海鸥的新位置。

2.攻击 ( 局部搜索 )

海鸥在迁徙过程中可以不断改变攻击角度和速度, 它们用翅膀和重量保持高度。当攻击猎物时,它们就在空中进行螺旋形状运动。 x 、 y 和 z 平面中的运动行为描述如下:
x = r ∗ c o s ( θ ) y = r ∗ s i n ( θ ) z = r ∗ θ r = u ∗ e θ v x=r*cos(\theta)\\ y=r*sin(\theta)\\ z=r*\theta\\ r=u*e^{\theta v} x=rcos(θ)y=rsin(θ)z=rθr=ueθv

其中 r 是每个螺旋的半径, θ 是 [0 , 2π] 范围内的随机角度
值。u 和 v 是螺旋形状的相关常数, e 是自然对数的底数。海鸥的
攻击位置前面的式子可得:
P s ( t ) = D s ( t ) ∗ x ∗ y ∗ z + P b s ( t ) P_{s}(t)=D_{s}(t)*x*y*z+P_{bs}(t) Ps(t)=Ds(t)xyz+Pbs(t)
P s ( t ) P_{s}(t) Ps(t)是海鸥的攻击位置。

3.算法伪代码:

1.主程序框架

( 1 ) 海鸥种群 P s P_{s} Ps 初始化,参数 A A A B B B M A X i t e r a t i o n MAX_{iteration} MAXiteration

( 2 ) 设置相应参数: f c f_{c} fc = 2, u = 1 u=1 u=1, v = 1 v=1 v=1

( 3 ) W h i l e ( t < 最 大 迭 代 次 数 ) While(t < 最大迭代次数) While(t<)

( 4 ) { 计算适应值 ( P s P_{s} Ps ) /* 使用计算适应度函数计算每只海鸥的适应度值 */
( 5 ) r d r_{d} rd 取随机值 (0 , 1)
( 6 ) θ \theta θ 取随机值 (0 , 2π)
( 7 ) r = u ∗ e θ v r=u*e^{\theta v} r=ueθv
( 8 )计算 D s D_{s} Ds
( 9 )计算海鸥新位置 P s P_{s} Ps
( 10 )更新最佳海鸥位置和适应值, t = t + 1 t=t+1 t=t+1;
( 11 ) }
( 12 )输出最佳海鸥位置和适应值,结束程序

2.计算适应值 (P s ) 过程

( 1 ) for i=1 to n
( 2 ) {

( 3 )计算每只海鸥适应值
( 4 ) }
( 5 )更新最佳海鸥位置和适应值
( 6 )输出最佳海鸥适应值
( 7 )结束

3.更新最佳海鸥位置和适应值过程

( 1 ) for i=1 to n
( 2 ) {

( 3 )如果海鸥 (i) 的适应值小于 Best 值
( 4 ) { 用海鸥 (i) 的适应值替代 Best 值
( 5 )用海鸥 (i) 的位置替代 Best 的位置
( 6 ) }
( 7 ) }
( 8 )输出 Best 值和位置
( 9 )结束程序

3.运行结果图:

在这里插入图片描述

4.参考文献:

[1]韩毅,徐梓斌,张亮,邓丽丽.国外新型智能优化算法——海鸥优化算法[J].现代营销(经营版),2019(10):70-71.

[2]Gaurav Dhiman,Vijay Kumar. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems,2018.

5.Matlab

海鸥优化算法
改进算法matlab代码

名称 说明或者参考文献
融合黄金正弦与sigmoid连续化的海鸥优化算法(GSCSOA) [1]王宁,何庆.融合黄金正弦与sigmoid连续化的海鸥优化算法[J/OL].计算机应用研究:1-8[2021-08-06].https://doi.org/10.19734/j.issn.1001-3695.2021.05.0176.
一种基于非线性惯性权重的海鸥优化算法(ISOA) [1]秦维娜,张达敏,尹德鑫,蔡朋宸.一种基于非线性惯性权重的海鸥优化算法[J/OL].小型微型计算机系统:1-8[2021-05-06].http://kns.cnki.net/kcms/detail/21.1106.TP.20210330.1445.028.html.
融合改进 Logistics 混沌和正弦余弦算子的自适应 t 分布海鸥算法(ISOA) [1]毛清华,王迎港.融合改进Logistics混沌和正弦余弦算子的自适应t分布海鸥算法[J/OL].小型微型计算机系统:1-9[2021-11-16].http://kns.cnki.net/kcms/detail/21.1106.TP.20211019.1549.006.html.
具有记忆功能的海鸥优化算法(MSOA) [1]许乐,莫愿斌,卢彦越.具有记忆功能的海鸥优化算法求解方程组[J].计算机工程与设计,2021,42(12):3428-3437.DOI:10.16208/j.issn1000-7024.2021.12.018.
多方向螺旋搜索的混沌海鸥优化算法(MESOA) [1]张冰洁,何庆,戴松利,杜逆索.多方向螺旋搜索的混沌海鸥优化算法[J/OL].小型微型计算机系统:1-10[2022-01-18].http://kns.cnki.net/kcms/detail/21.1106.TP.20211213.1750.028.html.

算法相关应用matlab代码

名称 说明或者参考文献
海鸥优化的BP神经网络(预测) https://blog.csdn.net/u011835903/article/details/112149776(原理一样,只是优化算法是海鸥)
海鸥优化的BP神经网络(分类) https://blog.csdn.net/u011835903/article/details/112149394(原理一样,只是优化算法是海鸥)
基于海鸥算法的极限学习机(ELM)回归预测 https://blog.csdn.net/u011835903/article/details/111073635(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的SVM数据分类 https://blog.csdn.net/u011835903/article/details/110523352(原理一样,只是优化算法是海鸥)
基于海鸥优化的最大熵多阈值分割 https://blog.csdn.net/u011835903/article/details/108203775(原理一样,只是优化算法是海鸥)
海鸥算法优化的otsu多阈值分割 https://blog.csdn.net/u011835903/article/details/108019744 (原理一样,只是优化算法是海鸥)
海鸥优化的PID参数优化 https://blog.csdn.net/u011835903/article/details/109306387 (原理一样,只是优化算法是海鸥)
基于海鸥算法优化概率神经网络PNN的分类预测 https://blog.csdn.net/u011835903/article/details/111496232(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的Elman神经网络数据预测 https://blog.csdn.net/u011835903/article/details/111411127(原理一样,只是优化算法是海鸥)
基于海鸥算法的极限学习机(ELM)分类算法 https://blog.csdn.net/u011835903/article/details/111177850(原理一样,只是优化算法是海鸥)
基于海鸥算法的极限学习机(ELM)回归预测 https://blog.csdn.net/u011835903/article/details/111073635(原理一样,只是优化算法是海鸥)
基于海鸥算法改进的随机森林回归预测算法(SOA-RF) https://blog.csdn.net/u011835903/article/details/121860633(原理一样,只是优化算法是海鸥)
基于海鸥算法改进的随机森林分类算法(SOA-RF) https://blog.csdn.net/u011835903/article/details/121860734(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的核极限学习机(KELM)分类算法 https://blog.csdn.net/u011835903/article/details/116851164(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的核极限学习机(KELM)回归预测 https://blog.csdn.net/u011835903/article/details/116849032(原理一样,只是优化算法是海鸥)
基于海鸥算法的PID神经网络解耦控制算法 https://blog.csdn.net/u011835903/article/details/110437852(原理一样,只是优化算法是海鸥)
海鸥算法改进的深度极限学习机DELM的预测(SOA-DELM) https://blog.csdn.net/u011835903/article/details/123115147(原理一样,只是优化算法是海鸥)
海鸥算法改进的深度极限学习机DELM的分类(SOA-DELM) https://blog.csdn.net/u011835903/article/details/123091238(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的K-means图像分割算法 https://blog.csdn.net/u011835903/article/details/109404281(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的Renyi熵图像多阈值分割 https://blog.csdn.net/u011835903/article/details/108276355(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的指数熵图像多阈值分割 https://blog.csdn.net/u011835903/article/details/108263933(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的灰度熵图像多阈值分割 https://blog.csdn.net/u011835903/article/details/108243596(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的对称交叉熵图像多阈值分割 https://blog.csdn.net/u011835903/article/details/108241032(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的最小交叉熵图像多阈值分割 https://blog.csdn.net/u011835903/article/details/108240562(原理一样,只是优化算法是海鸥)
基于海鸥算法优化的二维最大熵图像阈值分割 https://blog.csdn.net/u011835903/article/details/108214713(原理一样,只是优化算法是海鸥)
基于海鸥算法的二维Otsu图像阈值分割 https://blog.csdn.net/u011835903/article/details/108023193(原理一样,只是优化算法是海鸥)
海鸥算法优化脉冲耦合神经网络的图像自动分割 https://blog.csdn.net/u011835903/article/details/112909060(原理一样,只是优化算法是海鸥)
基于海鸥算法的工程优化案例(3种) https://blog.csdn.net/u011835903/article/details/114106139(原理一样,只是优化算法是海鸥)

6. Python代码

改进算法python代码

名称 说明或者参考文献
一种基于非线性惯性权重的海鸥优化算法(ISOA) [1]秦维娜,张达敏,尹德鑫,蔡朋宸.一种基于非线性惯性权重的海鸥优化算法[J/OL].小型微型计算机系统:1-8[2021-05-06].http://kns.cnki.net/kcms/detail/21.1106.TP.20210330.1445.028.html.

算法相关应用python代码

名称 说明或者参考文献
基于海鸥算法的SVM分类(SOA-SVM) https://blog.csdn.net/u011835903/article/details/110523352(原理一样,只是优化算法是海鸥)
基于海鸥算法的SVM回归预测(SOA-SVM) https://blog.csdn.net/u011835903/article/details/110630270(原理一样,只是优化算法是海鸥)
基于海鸥算法的极限学习机(ELM)分类算法(SOA-ELM) https://blog.csdn.net/u011835903/article/details/111177850(原理一样,只是优化算法是海鸥)
基于海鸥算法的极限学习机(ELM)回归预测算法(SOA-ELM) https://blog.csdn.net/u011835903/article/details/111073635(原理一样,只是优化算法是海鸥)
基于海鸥算法的无线传感器网(WSN)覆盖优化(SSA-WSN) https://blog.csdn.net/u011835903/article/details/109262039https://blog.csdn.net/u011835903/article/details/111073635(原理一样,只是优化算法是海鸥)
基于海鸥算法改进的随机森林回归预测算法(SOA-RF) https://blog.csdn.net/u011835903/article/details/121860633(原理一样,只是优化算法是海鸥)
基于海鸥算法改进的随机森林分类算法(SOA-RF) https://blog.csdn.net/u011835903/article/details/121860734(原理一样,只是优化算法是海鸥)
个人资料介绍
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/142374.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • php属于前端还是后端_php实时推送到前端

    php属于前端还是后端_php实时推送到前端功能说明使用第三方平台goeasy实现服务端向前端推送数据基本原理WebSocket使用准备申请goeasy账号并创建应用官网http://www.goeasy.io安装并开启goeasy插件(注意清除缓存)在插件配置中填写应用的Appkeys等配置项使用说明使用插件集成的事件插件在前台(index模块)和后台(admin模块)各集成了两个默认的事件订阅,可以在js中通过监听top来处理,例:也…

  • phpstrom 3.3激活码_通用破解码

    phpstrom 3.3激活码_通用破解码,https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • Python学生信息管理系统课程设计报告_python做的项目管理系统

    Python学生信息管理系统课程设计报告_python做的项目管理系统1.本人第一次学python做出来的,当时满满的成就感,当作纪念!!!!!非常简单,复制即可使用代码块importjson#把字符串类型的数据转换成Python基本数据类型或者将Python基本数据类型转换成字符串类型。deflogin_user():whileTrue:register=input(‘学生姓名:’)try:…

    2022年10月10日
  • 打赏功能的实现

    打赏功能的实现

  • java常用的三种注释方式

    java常用的三种注释方式1.在java中,有三种常用的标记注释方式,最常用的是单行注释,‘//’它由两条斜杆组成记住是斜杆而不是反斜杠(\),注释是用来给代码注释说明,会存放一些方便理解代码涵义的说明2.如果需要写长篇内容注释且可用多行注释‘/**/’,因为单行注释已经不够满足需求了,在多行注释里面记录比较长的一段注释内容3.最后一种注释是文档注释/***/,功能比较强大,可以生成注释文档(关于文档注释这里先有个概念),java有自带文档注释工具在JDK安装路径下的bin目录下的javadoc.exe4….

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号