大家好,又见面了,我是你们的朋友全栈君。
SVR软件包的安装:https://www.cnblogs.com/Ran-Chen/p/9462825.html
%使用SVR模型,得到输入矢量x(x包含3个变量x1,x2,x3)到输出矢量y(y只包含一个变量)之间的映射关系,也就是计算y=f(x1,x2,x3)函数的f
%x1,x2,x3时简单的加法运算 y=x1+x2+x3
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.0028 9.3469 0.7711
%500 0.05 7.38 0.8
%1000 0.17 4.5889 0.8618
%10000 4.1250 0.006051 0.9997
%20000 8.98 9.98041e-05 0.9999
%50000 33.24 9.97801e-05 0.9999
%60000
%平方后相加运算 y=x1的平方+x2的平方+x3的平方
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.002 3212 0.72033
%500 0.04 2516 0.5748
%1000 0.16 2885 0.62
%10000 12.8 1150 0.7964
%20000 41 376 0.9199
%50000 159 4.90 0.998527
%60000 503 0.92 0.999717
%结论:随着训练SVR模型时使用的数据量变大,训练的效果越好。通过误差变小,相关系数变大来体现。
%%clean work
close all;%关闭所有figure窗口
clear;%清空变量
clc;%清空命令
format compact;%空格紧凑
%生成对模型进行训练的数据
%这个模型为y=f(x1,x2,x3),表示此模型有3个输入变量x1,x2,x3,输出变量有1个,y。
%x1 = (0:0.001:10)’; x2 = (20:0.001:30)’; x3 = (50:0.001:60)’;
x1=randi(10,10000,1); x2=randi(10,10000,1); x3=randi(10,10000,1); %使用1到10之间的随机数进行训练
y = x1.^2 + x2.^2 +x3.^2;
%y = x1 + x2 +x3;
%建立回归模型,也就是对模型进行训练
%x是该模型的输入矢量,x中每行有3个数据,分别是x1,x2,x3,y的每个矢量有1个数据
x(:,1)=x1;x(:,2)=x2;x(:,3)=x3;
fprintf(‘Start SVR train,please waiting …’);
tic;%记录SVR模型训练的时间
model = libsvmtrain(y,x,’-s 3 -t 2 -c 2.2 -g 2.8 -p 0.01’);
toc
%利用建立的模型看其在训练集上的回归效果,也就是使用已经训练后的SVR模型,输入训练时使用的输入数据,预测输出结果
%下面libsvmpredict函数的第一个参数无所谓,但是具有和输出变量一样的列数和行数
%如果设置为训练模型时使用过的输出变量,那么在预测时,
%会计算预测的输出结果值和原始的输出结果值之间的误差mse和相关系数prob
[py,mse,prob] = libsvmpredict(y,x,model,’-b 0’);
%简单的加法运算
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.0028 9.3469 0.7711
%500 0.05 7.38 0.8
%1000 0.17 4.5889 0.8618
%10000 4.1250 0.006051 0.9997
%20000 8.98 9.98041e-05 0.9999
%50000 33.24 9.97801e-05 0.9999
%60000
%平方后相加运算
%训练个数 训练需要的时间(秒) 误差
%100 0.002 3212 0.72033
%500 0.04 2516 0.5748
%1000 0.16 2885 0.62
%10000 12.8 1150 0.7964
%20000 41 376 0.9199
%50000 159 4.90 0.998527
%60000 503 0.92 0.999717
%结论:随着训练SVR模型时使用的数据量变大,训练的效果越好。通过误差变小,相关系数变大来体现。
figure;%建立一个窗口
plot(y,‘o’);%原始数据以o这种形式标记
hold on;%保持当前图像不刷新
plot(py,‘r*’);%回归数据以红色的*标记
legend(‘原始数据:训练SVR模型时,使用的输出变量’,‘回归数据:使用训练好的SVR模型,对训练时使用的输入变量进行预测’);%设置图例线条
grid on;%画图的时候添加网格线
%进行预测
testx1 = [8.5;3.6;1.5];testx2 = [2.1;2.6;5.8];testx3 = [3.2;5.5;7.8];
display(‘真实数据’);%控制台输出
testy = testx1.^2 + testx2.^2 + testx3.^2
%testy = testx1 + testx2 + testx3
%下面libsvmpredict函数的第一个参数和第二个参数设置为相同,
%就是收入给已经训练好的模型的输入参数
testx(:,1)=testx1;testx(:,2)=testx2;testx(:,3)=testx3;
[ptesty,tmse,prob2] = libsvmpredict(testy,testx,model,’-b 0’);
display(‘预测数据’);
ptesty
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/142078.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...