SVR支持向量回归例子「建议收藏」

SVR支持向量回归例子「建议收藏」SVR支持向量回归例子欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用M…

大家好,又见面了,我是你们的朋友全栈君。

SVR软件包的安装:https://www.cnblogs.com/Ran-Chen/p/9462825.html
%使用SVR模型,得到输入矢量x(x包含3个变量x1,x2,x3)到输出矢量y(y只包含一个变量)之间的映射关系,也就是计算y=f(x1,x2,x3)函数的f
%x1,x2,x3时简单的加法运算 y=x1+x2+x3
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.0028 9.3469 0.7711
%500 0.05 7.38 0.8
%1000 0.17 4.5889 0.8618
%10000 4.1250 0.006051 0.9997
%20000 8.98 9.98041e-05 0.9999
%50000 33.24 9.97801e-05 0.9999
%60000
%平方后相加运算 y=x1的平方+x2的平方+x3的平方
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.002 3212 0.72033
%500 0.04 2516 0.5748
%1000 0.16 2885 0.62
%10000 12.8 1150 0.7964
%20000 41 376 0.9199
%50000 159 4.90 0.998527
%60000 503 0.92 0.999717
%结论:随着训练SVR模型时使用的数据量变大,训练的效果越好。通过误差变小,相关系数变大来体现。

%%clean work
close all;%关闭所有figure窗口
clear;%清空变量
clc;%清空命令
format compact;%空格紧凑
%生成对模型进行训练的数据
%这个模型为y=f(x1,x2,x3),表示此模型有3个输入变量x1,x2,x3,输出变量有1个,y。
%x1 = (0:0.001:10)’; x2 = (20:0.001:30)’; x3 = (50:0.001:60)’;
x1=randi(10,10000,1); x2=randi(10,10000,1); x3=randi(10,10000,1); %使用1到10之间的随机数进行训练
y = x1.^2 + x2.^2 +x3.^2;
%y = x1 + x2 +x3;
%建立回归模型,也就是对模型进行训练
%x是该模型的输入矢量,x中每行有3个数据,分别是x1,x2,x3,y的每个矢量有1个数据
x(:,1)=x1;x(:,2)=x2;x(:,3)=x3;
fprintf(‘Start SVR train,please waiting …’);
tic;%记录SVR模型训练的时间
model = libsvmtrain(y,x,’-s 3 -t 2 -c 2.2 -g 2.8 -p 0.01’);
toc
%利用建立的模型看其在训练集上的回归效果,也就是使用已经训练后的SVR模型,输入训练时使用的输入数据,预测输出结果
%下面libsvmpredict函数的第一个参数无所谓,但是具有和输出变量一样的列数和行数
%如果设置为训练模型时使用过的输出变量,那么在预测时,
%会计算预测的输出结果值和原始的输出结果值之间的误差mse和相关系数prob
[py,mse,prob] = libsvmpredict(y,x,model,’-b 0’);
%简单的加法运算
%训练个数 训练需要的时间(秒) 误差 相关系数
%100 0.0028 9.3469 0.7711
%500 0.05 7.38 0.8
%1000 0.17 4.5889 0.8618
%10000 4.1250 0.006051 0.9997
%20000 8.98 9.98041e-05 0.9999
%50000 33.24 9.97801e-05 0.9999
%60000
%平方后相加运算
%训练个数 训练需要的时间(秒) 误差
%100 0.002 3212 0.72033
%500 0.04 2516 0.5748
%1000 0.16 2885 0.62
%10000 12.8 1150 0.7964
%20000 41 376 0.9199
%50000 159 4.90 0.998527
%60000 503 0.92 0.999717
%结论:随着训练SVR模型时使用的数据量变大,训练的效果越好。通过误差变小,相关系数变大来体现。
figure;%建立一个窗口
plot(y,‘o’);%原始数据以o这种形式标记
hold on;%保持当前图像不刷新
plot(py,‘r*’);%回归数据以红色的*标记
legend(‘原始数据:训练SVR模型时,使用的输出变量’,‘回归数据:使用训练好的SVR模型,对训练时使用的输入变量进行预测’);%设置图例线条
grid on;%画图的时候添加网格线

%进行预测
testx1 = [8.5;3.6;1.5];testx2 = [2.1;2.6;5.8];testx3 = [3.2;5.5;7.8];
display(‘真实数据’);%控制台输出
testy = testx1.^2 + testx2.^2 + testx3.^2
%testy = testx1 + testx2 + testx3
%下面libsvmpredict函数的第一个参数和第二个参数设置为相同,
%就是收入给已经训练好的模型的输入参数
testx(:,1)=testx1;testx(:,2)=testx2;testx(:,3)=testx3;
[ptesty,tmse,prob2] = libsvmpredict(testy,testx,model,’-b 0’);
display(‘预测数据’);
ptesty

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/142078.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 《前端运维》一、Linux基础–08Shell其他及补充

    这一篇,我们来学习一些重要的命令,在工作中也会经常用到。一、简单正则要注意的是,有些命令不支持正则模式,比如fs、find等,有些是支持正则的,比如grep、awk、sed等。正则的语法和js中的

  • 奔图m7160dw驱动_奔图打印机m7100dn

    奔图m7160dw驱动_奔图打印机m7100dn奔图M7100dW打印机驱动是专门为奔图旗下的M7100dW型号打印机打造的驱动程序。它能够为你解决打印机常见的无法扫描、无法识别等问题。他是连接打印机与电脑的桥梁,让你更好的操作这款的打印机。【打印机特色】1、操作便捷,乐在其中ECOSYSP2135dn外观小巧,空间适应度很高,可以更好地满足用户办公空间布置的需要。而且外形美观,放置在办公桌上能够与办公家具很好地融合在一起,营造出和谐的办公室…

  • Gradle DSL method not found: ‘android()

    Gradle DSL method not found: ‘android()

  • s有一天,教你开始truts2

    s有一天,教你开始truts2

    2021年12月17日
  • 项目范围管理计划模板[通俗易懂]

    项目范围管理计划模板[通俗易懂]XX项目项目范围管理计划     文档编号:文档信息:文档名称:文档类别:工程类密   级:内部基准:版本信息:1.0建立日期:创建人:批准人:批准日期: 保管人:存放位置:配置库编辑软件:MicrosoftOffice2007中文版     文档修订记录

  • 数据库设计工具MySQLWorkBench[通俗易懂]

    数据库设计工具MySQLWorkBench[通俗易懂]  该工具为MySQL官方提供地址:http://dev.mysql.com/downloads/workbench/小伙伴们注意按自己的操作系统选择下载版本。·       注意事项:安装后将环境语言配置成简体中文,否则中文乱码工作步骤新建模型后,会进入此页面。 1./2.切换数据库表设计与ER图。3. 创建/管理ER图4. 创建/管理表结构1….

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号