手写算法-python代码实现Lasso回归

手写算法-python代码实现Lasso回归手写算法-python代码实现Lasso回归Lasso回归简介Lasso回归分析与python代码实现1、python实现坐标轴下降法求解Lasso调用sklearn的Lasso回归对比2、近似梯度下降法python代码实现LassoLasso回归简介上一篇文章我们详细介绍了过拟合和L1、L2正则化,Lasso就是基于L1正则化,它可以使得参数稀疏,防止过拟合。其中的原理都讲的很清楚,详情可以看我的这篇文章。链接:原理解析-过拟合与正则化本文主要实现python代码的Lasso回归,并用实例佐证原

大家好,又见面了,我是你们的朋友全栈君。

Lasso回归简介

上一篇文章我们详细介绍了过拟合和L1、L2正则化,Lasso就是基于L1正则化,它可以使得参数稀疏,防止过拟合。其中的原理都讲的很清楚,详情可以看我的这篇文章。
链接: 原理解析-过拟合与正则化

本文主要实现python代码的Lasso回归,并用实例佐证原理。

Lasso回归分析与python代码实现

我们先生成数据集,还是用sklearn生成。

import numpy as np
from matplotlib import pyplot as plt
import sklearn.datasets

#生成100个一元回归数据集
x,y = sklearn.datasets.make_regression(n_features=1,noise=5,random_state=2020)
plt.scatter(x,y)
plt.show()

在这里插入图片描述
如上所示,生成了一个一元回归数据集,如果数据中混入了噪声,如:(手动添加5个噪声数据)

#加5个异常数据,为什么这么加,大家自己看一下生成的x,y的样子
a = np.linspace(1,2,5).reshape(-1,1)
b = np.array([350,380,410,430,480])

#生成新的数据集
x_1 = np.r_[x,a]
y_1 = np.r_[y,b]

plt.scatter(x_1,y_1)
plt.show()

在这里插入图片描述
这个时候,数据表现为这个样子,由于这几个数据是异常数据,所以我们的线性回归模型应该拟合下面的样本点,即最终的参数应该比较小,不应该因为加入了几个很异常的数据,导致参数发生很大的偏移,以这个图为例,就是不应该变得很大。
,下面用我们之前写好的线性回归类(python代码实现),来展示效果:

class normal():
    def __init__(self):
        pass

    def fit(self,x,y):
        m=x.shape[0]
        X = np.concatenate((np.ones((m,1)),x),axis=1)
        xMat=np.mat(X)
        yMat =np.mat(y.reshape(-1,1))

        xTx=xMat.T*xMat
        #xTx.I为xTx的逆矩阵
        ws=xTx.I*xMat.T*yMat
        
        #返回参数
        return ws
         


plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
clf1 =normal()
#拟合原始数据
w1 = clf1.fit(x,y)
#预测数据
y_pred = x * w1[1] + w1[0]

#拟合新数据
w2 = clf1.fit(x_1,y_1)
#预测数据
y_1_pred = x_1 * w2[1] + w2[0]

print('原始样本拟合参数:\n',w1)
print('\n')
print('新样本拟合参数:\n',w2)

ax1= plt.subplot()
ax1.scatter(x_1,y_1,label='样本分布')
ax1.plot(x,y_pred,c='y',label='原始样本拟合')
ax1.plot(x_1,y_1_pred,c='r',label='新样本拟合')
ax1.legend(prop = {'size':15}) #此参数改变标签字号的大小
plt.show()

在这里插入图片描述

W的第一个参数是截距,第二个参数是斜率,也就是系数,可以看到系数变大了很多,仅因为加入了几个噪声,模型的鲁棒性很差,泛化能力也差,出现了一定程度的过拟合。

我们再来看Lasso的表达式:
在这里插入图片描述
= 线性回归损失函数 + L1正则项,上一篇文章我们有分析过L1正则项的特点(本文前面有链接),参数λ是正则项系数,正则项对参数θ不是连续可导,一般情况下,有以下两种方式来求Lasso的参数,
1、坐标轴下降法
2、用最小角回归法
这里推荐一篇刘建平博士的博客,写得很清楚。
链接: Lasso回归算法: 坐标轴下降法与最小角回归法小结

坐标轴下降法的数学依据主要是这个结论(此处不做证明):一个可微的凸函数J(θ), 其中θ是nx1的向量,即有n个维度。如果在某一点θi,使得J(θ)在每一个坐标轴θi(i = 1,2,...n)上都是最小值,那么J(θi)就是一个全局的最小值。

1、python实现坐标轴下降法求解Lasso

我们采用坐标轴下降法来求参数:python代码实现如下:

#临时写的函数,要在引入一个copy包,进行深度拷贝
#大家写一份代码,把要引入的包全放在最前面
import copy

 def CoordinateDescent(x, y,epochs,learning_rate,Lambda):        
        m=x.shape[0]
        X = np.concatenate((np.ones((m,1)),x),axis=1)
        xMat=np.mat(X)
        yMat =np.mat(y.reshape(-1,1))
        
        
        w = np.ones(X.shape[1]).reshape(-1,1)
        
        
        for n in range(epochs):
            
            
            out_w = copy.copy(w)
            for i,item in enumerate(w):
                #在每一个W值上找到使损失函数收敛的点
                for j in range(epochs):
                    h = xMat * w 
                    gradient = xMat[:,i].T * (h - yMat)/m + Lambda * np.sign(w[i])
                    w[i] = w[i] - gradient* learning_rate
                    if abs(gradient)<1e-3:
                        break
            out_w = np.array(list(map(lambda x:abs(x)<1e-3, out_w-w)))
            if out_w.all():
                break
        return  w

CoordinateDescent()函数来实现我们的Lasso回归,示例:

当Lambda参数为0时,也就是不加L1正则项时,就是普通的线性回归,参数输出都是一样的,也是47点多

#Lambda=0时;
w = CoordinateDescent(x_1,y_1,epochs=250,learning_rate=0.001,Lambda=0)
print(w)

#计算新的拟合值
y_1_pred = x_1 * w[1] + w[0]

ax1= plt.subplot()
ax1.scatter(x_1,y_1,label='样本分布')
ax1.plot(x,y_pred,c='y',label='原始样本拟合')
ax1.plot(x_1,y_1_pred,c='r',label='新样本拟合')
ax1.legend(prop = {'size':15}) #此参数改变标签字号的大小
plt.show()

在这里插入图片描述

当Lambda =10时,参数变为37点多;

#Lambda=10时;
w = CoordinateDescent(x_1,y_1,epochs=250,learning_rate=0.001,Lambda=10)
print(w)

#计算新的拟合值
y_1_pred = x_1 * w[1] + w[0]

ax1= plt.subplot()
ax1.scatter(x_1,y_1,label='样本分布')
ax1.plot(x,y_pred,c='y',label='原始样本拟合')
ax1.plot(x_1,y_1_pred,c='r',label='新样本拟合')
ax1.legend(prop = {'size':15}) #此参数改变标签字号的大小
plt.show()

在这里插入图片描述

当Lambda =30时,参数变为17点多,基本上已经和没添加异常值的参数是一样的了;

#Lambda=30时;
w = CoordinateDescent(x_1,y_1,epochs=250,learning_rate=0.001,Lambda=30)
print(w)

#计算新的拟合值
y_1_pred = x_1 * w[1] + w[0]

ax1= plt.subplot()
ax1.scatter(x_1,y_1,label='样本分布')
ax1.plot(x,y_pred,c='y',label='原始样本拟合')
ax1.plot(x_1,y_1_pred,c='r',label='新样本拟合')
ax1.legend(prop = {'size':15}) #此参数改变标签字号的大小
plt.show()

在这里插入图片描述

当Lambda =100时,参数基本上已经趋近于0,拟合线差不多就是一条水平线了;

#Lambda=100时;
w = CoordinateDescent(x_1,y_1,epochs=250,learning_rate=0.001,Lambda=100)
print(w)

#计算新的拟合值
y_1_pred = x_1 * w[1] + w[0]

ax1= plt.subplot()
ax1.scatter(x_1,y_1,label='样本分布')
ax1.plot(x,y_pred,c='y',label='原始样本拟合')
ax1.plot(x_1,y_1_pred,c='r',label='新样本拟合')
ax1.legend(prop = {'size':15}) #此参数改变标签字号的大小
plt.show()

在这里插入图片描述
正则项参数过大、过小都不好,
过小起不到惩罚效果,模型任然过拟合;
过大惩罚太大,会使得模型欠拟合,达不到要求;
我们选择参数的标准:模型在训练集、验证集、测试集上,评估效果接近时,这个正则项参数较好。

调用sklearn的Lasso回归对比

同样的,可以调用sklearn的Lasso回归来测试代码的正确性;
(只看参数的值,图就不画了)

from sklearn.linear_model import Lasso
lr=Lasso(alpha=0)
lr.fit(x_1,y_1)
print('alpha=0时',lr.coef_,'\n')

lr=Lasso(alpha=10)
lr.fit(x_1,y_1)
print('alpha=10时',lr.coef_,'\n')

lr=Lasso(alpha=30)
lr.fit(x_1,y_1)
print('alpha=30时',lr.coef_,'\n')

lr=Lasso(alpha=100)
lr.fit(x_1,y_1)
print('alpha=100时',lr.coef_)

在这里插入图片描述

基本上和我们的python代码实现的系数差不多。

2、近似梯度下降法python代码实现Lasso

只是在我们梯度下降法代码基础上,改了梯度的计算,加了sign(w),也就是加上L1正则项的导数);

class lasso():
    def __init__(self):
        pass
    
    #梯度下降法迭代训练模型参数,x为特征数据,y为标签数据,a为学习率,epochs为迭代次数
    def fit(self,x,y,a,epochs,Lambda):  
        #计算总数据量
        m=x.shape[0]
        #给x添加偏置项
        X = np.concatenate((np.ones((m,1)),x),axis=1)
        #计算总特征数
        n = X.shape[1]
        #初始化W的值,要变成矩阵形式
        W=np.mat(np.ones((n,1)))
        #X转为矩阵形式
        xMat = np.mat(X)
        #y转为矩阵形式,这步非常重要,且要是m x 1的维度格式
        yMat =np.mat(y.reshape(-1,1))
        #循环epochs次
        for i in range(epochs):
            gradient = xMat.T*(xMat*W-yMat)/m + Lambda * np.sign(W)
            W=W-a * gradient
        return W
    def predict(self,x,w):  #这里的x也要加偏置,训练时x是什么维度的数据,预测也应该保持一样
        return np.dot(x,w)

下面是运行的结果:
在这里插入图片描述
sklearn展示Lasso:

1、随着alpha值的增大,也就是正则项系数增大,系数变得越来越稀疏,更多的系数变为0。

#波士顿房价回归数据集
data =  sklearn.datasets.load_boston()
x =data['data']
y= data['target']

from sklearn.linear_model import Lasso
lr=Lasso(alpha= 1)
lr.fit(x,y)
print('当alpha=1时:\n',lr.coef_)

lr=Lasso(alpha= 5)
lr.fit(x,y)
print('当alpha=5时:\n',lr.coef_)

lr=Lasso(alpha= 10)
lr.fit(x,y)
print('当alpha=10时:\n',lr.coef_)

在这里插入图片描述

下一篇我们介绍Ridge回归。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/141775.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • Java List转Json字符串

    Java List转Json字符串importnet.sf.json.JSONArray;     Stringjson=JSONArray.fromObject(list).toString();不解释

    2022年10月18日
  • KDD2018《Adversarial Attacks on Neural Networks for Graph Data》 论文详解「建议收藏」

    KDD2018《Adversarial Attacks on Neural Networks for Graph Data》 论文详解「建议收藏」论文链接:https://arxiv.org/pdf/1805.07984.pdfAbstract本文介绍了第一个在属性图上进行对抗攻击的研究,特别关注利用图卷积的思想模型。除了在测试阶段进行攻击,本文进行了更具挑战的poisoningattack(聚焦于机器学习模型的训练阶段)类别。在考虑实例间依赖关系的情况下,针对节点特征和图结构进行对抗扰动(adversarialperturbation)。通过保证重要的数据特征保证扰动是不可见的(unnoticeable)。为了解决底层的离散域(disc

  • 三阶魔方七步还原法详细教程_魔方最简单的还原方法

    三阶魔方七步还原法详细教程_魔方最简单的还原方法版权声明:本文为转载文章,遵循CC4.0by-sa版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/Bob__yuan/article/detai

  • axios上传文件以及遇到的问题

    axios上传文件以及遇到的问题axios上传文件以及遇到的问题1,这里上传文件使用的是elementUI的上传,也用原生的input上传写了,但是没有时间做多文件上传,下面会把代码贴出。2,这里上传文件我是先获取OSS权限和上传路径,然后再上传。但是权限获取成功后,上传到阿里云服务器时,OPTION请求报403。原因是项目中axios设置了拦截器,添加了config配置,但是在axios发送OPTION测试接口是否有权限访…

  • VUE中diff比较

    VUE中diff比较

  • Istio介绍

    服务网格服务网格(ServiceMesh)这个术语通常用于描述构成这些应用程序的微服务网络以及应用之间的交互。随着规模和复杂性的增长,服务网格越来越难以理解和管理。它的需求包括服务发现、负载均衡、故障恢复、指标收集和监控以及通常更加复杂的运维需求,例如A/B测试、金丝雀发布、限流、访问控制和端到端认证等。服务网格的工作Istio将服务请求路由到目的地址,根据中的参数判断是到生产环…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号