matlab之griddata函数

matlab之griddata函数griddata函数

大家好,又见面了,我是你们的朋友全栈君。

griddata函数

————-

%使用griddata插值

A=[1.486,3.059,0.1;2.121,4.041,0.1;2.570,3.959,0.1;3.439,4.396,0.1;4.505,3.012,0.1;3.402,1.604,0.1;2.570,2.065,0.1;2.150,1.970,0.1;1.794,3.059,0.2;2.121,3.615,0.2;2.570,3.473,0.2;3.421,4.160,0.2;4.271,3.036,0.2;3.411,1.876,0.2;2.561,2.562,0.2;2.179,2.420,0.2;2.757,3.024,0.3;3.439,3.970,0.3;4.084,3.036,0.3;3.402,2.077,0.3;2.879,3.036,0.4;3.421,3.793,0.4;3.953,3.036,0.4;3.402,2.219,0.4;3.000,3.047,0.5;3.430,3.639,0.5;3.822,3.012,0.5;3.411,2.385,0.5;3.103,3.012,0.6;3.430,3.462,0.6;3.710,3.036,0.6;3.402,2.562,0.6;3.224,3.047,0.7;3.411,3.260,0.7;3.542,3.024,0.7;3.393,2.763,0.7];

x=A(:,1);

y=A(:,2);

z=A(:,3);

scatter(x,y,5,z)%散点图

figure

[X,Y,Z]=griddata(x,y,z,linspace(1.486,4.271)’,linspace(1.604,4.276),’v4′);%插值

pcolor(X,Y,Z);

shading interp%伪彩色图

figure, contourf(X,Y,Z) %等高线图

figure, surf(X,Y,Z)%三维曲面

————–

x = rand(1,12);

y = rand(1,12);

z = rand(1,12); % now use some random z axis data

xi = linspace(min(x),max(x),30);        % x interpolation points

yi = linspace(min(y),max(y),30);        % x interpolation points

[Xi,Yi] = meshgrid(xi,yi);              % create grid of x and y

Zi = griddata(x,y,z,Xi,Yi);             % grid the data at Xi,Yi points

% Zi = griddata(x,y,z,Xi,Yi, ‘linear’)          % same as above(default)

% Zi = griddata(x,y,z,Xi,Yi, ‘cubic’)           % triangle based cubic interpolation

% Zi = griddata(x,y,z,Xi,Yi, ‘nearest’) % triangle based nearest neighbor

% Zi = griddata(x,y,z,Xi,Yi, ‘invdist’)         % inverse distance method

mesh(Xi,Yi,Zi)

hold on

plot3(x,y,z, ‘ko’)      % show original data as well

hold off

title(‘Figure 18.10: Griddata Example’) 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/141762.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号