pytorch笔记:04)resnet网络&解决输入图像大小问题「建议收藏」

pytorch笔记:04)resnet网络&解决输入图像大小问题「建议收藏」因为torchvision对resnet18-resnet152进行了封装实现,因而想跟踪下源码(^▽^)首先看张核心的resnet层次结构图(图1),它诠释了resnet18-152是如何搭建的,其中resnet18和resnet34结构类似,而resnet50-resnet152结构类似。下面先看resnet18的源码图1resnet18首先是models.resnet18…

大家好,又见面了,我是你们的朋友全栈君。

因为torchvision对resnet18-resnet152进行了封装实现,因而想跟踪下源码

首先看张核心的resnet层次结构图(图1),它诠释了resnet18-152是如何搭建的,其中resnet18和resnet34结构类似,而resnet50-resnet152结构类似。下面先看resnet18的源码
resnet层次图
图1

resnet18
首先是models.resnet18函数的调用

def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    #[2, 2, 2, 2]和结构图[]X2是对应的
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained: #加载模型权重
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model

这里涉及到了一个BasicBlock类(resnet18和34),这样的一个结构我们称为一个block。在block内部conv都使用了padding,因此输入的in_img_size和out_img_size都是56×56,在图2右边的shortcut只需要改变输入的channel的大小,输入block的输入tensor和输出tensor就可以相加(详细内容)
BasicBlock
图2

事实上图2是Bottleneck类(用于resnet50-152,稍后分析),其和BasicBlock差不多,图3为图2的精简版(ps:可以把下图视为为一个box_block,即多个block叠加在一起,x3说明有3个上图一样的结构串起来):
Bottleneck
图3

BasicBlock类,可以对比结构图中的resnet18和resnet34,类中expansion =1,其表示block内部最后一个卷积的输出channel与第一个卷积的输出channel比值,即:
e x p a n s i o n = l a s t _ b l o c k _ c h a n n e l / f i r s t _ b l o c k _ c h a n n e l expansion= last\_block\_channel/first\_block\_channel expansion=last_block_channel/first_block_channel

def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)
                     
class BasicBlock(nn.Module):
    expansion = 1
	#inplanes其实就是channel,叫法不同
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
		#把shortcut那的channel的维度统一
        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

接下来是ResNet类,其和我们通常定义的模型差不多一个__init__()+forward(),代码有点长,我们一步步来分析:

  1. 参考前面的结构图,所有的resnet的第一个conv层都是一样的,输出channel=64
  2. 然后到了self.layer1 = self._make_layer(block, 64, layers[0]),这里的layers[0]=2,然后我们进入到_make_layer函数,由于stride=1或当前的输入channel和上一个块的输出channel一样,因而可以直接相加
  3. self.layer2 = self._make_layer(block, 128, layers[1], stride=2),此时planes=128而self.inplanes=64(上一个box_block的输出channel),此时channel不一致,需要对输出的x扩维后才能相加,而downsample 实现的就是该功能(ps:这里只有box_block中的第一个block需要downsample,为何?看图4)
  4. self.layer3 = self._make_layer(block, 256, layers[2], stride=2),此时planes=256而self.inplanes=128为,此时也需要扩维后才能相加,layer4 同理。
    图4
    图4

图4中下标2,3,4和上面的步骤对应,图中箭头旁数值表示block输入或者输出的channel数。
具体看图4-2,上一个box_block的最后一个block输出channel为64(亦是下一个box_block的输入channel),而当前的box_block的第一个block的输出为128,在此需要扩维才能相加。然后到了当前box_block的第2个block,其输入channel和输出channel是一致的,因此无需扩维 (ps:在shotcut中若维度或者feature_size不一致则需要downsample,这里仅从维度方面进行阐述)。
就是说在box_block内部,只需要对第1个block进行扩维,因为在box_block内,第一个block输出channel和剩下的保持一致了。

class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
#downsample 主要用来处理H(x)=F(x)+x中F(x)和xchannel维度不匹配问题
downsample = None
#self.inplanes为上个box_block的输出channel,planes为当前box_block块的输入channel
#在shotcut中若维度或者feature_size不一致则需要downsample 
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
#只在这里传递了stride=2的参数,因而一个box_block中的图片大小只在第一次除以2
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

resnet152
resnet152和resnet18差不多,Bottleneck类替换了BasicBlock,[3, 8, 36, 3]也和上面结构图对应。

def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model

Bottleneck类,这里需要注意的是 expansion = 4,前面2个block的channel没有变,最后一个变成了第一个的4倍,具体可看本文的第2个图。


class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out

图像输入大小问题:
在旧版的torchvision中,其预训练权重的默认图片大小为224224,若图片大小经模型后缩小后和最后一层全连接层不匹配,则会抛出异常,比如输入大小256256
新版已经兼容了输入图片的大小,方法就是使用AdaptiveAvgPool2d

RuntimeError: size mismatch, m1: [1 x 8192], m2: [2048 x 1000] at c:\miniconda2\conda-bld\pytorch-cpu_1519449358620\work\torch\lib\th\generic/THTensorMath.c:1434

首先我们看下,resnet在哪些地方改变了输出图像的大小
size_change

conv和pool层的输出大小都可以根据下面公式计算得出
H o u t = f l o o r ( ( H i n + 2 ∗ p a d d i n g [ 0 ] − k e r n e l _ s i z e [ 0 ] ) / s t r i d e [ 0 ] ) + 1 H_{out} = floor((H_{in} + 2 * padding[0] – kernel\_size[0]) / stride[0]) + 1 Hout=floor((Hin+2padding[0]kernel_size[0])/stride[0])+1
W o u t = f l o o r ( ( W i n + 2 ∗ p a d d i n g [ 1 ] − k e r n e l _ s i z e [ 1 ] ) / s t r i d e [ 1 ] ) + 1 W_{out} = floor((W_{in} + 2 * padding[1] -kernel\_size[1] ) / stride[1] )+ 1 Wout=floor((Win+2padding[1]kernel_size[1])/stride[1])+1

方法1:
可以根据输入图片的大小和上面的公式先计算出最后一层神经元的数目calc_num,然后在替换掉fc层即可,比如

model =  torchvision.models.resnet152()
model.fc = nn.Linear(calc_num, nb_classes)

但方法需要自己计算calc_num,推荐使用方法2

方法2:
暴力的方法,就是不管卷积层的输出大小,取其平均值做为输出,比如:

model  = torchvision.models.resnet152()
model.avgpool = nn.AdaptiveAvgPool2d((1, 1))

第一次研究pytorch,请大神门轻喷

reference:
resnet详细介绍
deeper bottleneck Architectures详细介绍

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/141262.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • python虚拟环境安装和配置[通俗易懂]

    python虚拟环境安装和配置[通俗易懂]http://blog.csdn.net/pipisorry/article/details/47008981AnacondaConda是Continuum公司发布的Anaconda里边配备的一个包管理器。Conda让你更加方便地安装和管理各种扩展包和运行环境,同时支持Windows,MacOSX以及Linux。安装下载Python3版本[https://w…

    2022年10月19日
  • 个人整理的一些net 开源项目

    个人整理的一些net 开源项目net开源商城:BrnMall地址 http://www.brnshop.com/ 技术架构很不错;官方提供技术支持,有博客有视频介绍;官方技术博客:http://www.cnblogs.com/wheretime/官方视频下载地址:http://pan.baidu.com/s/1dDCKQXj真乃业界良心之作;风格和天猫京东各大商城接近;后台都很好;

  • 如何完全删除sql2012_如何完全删除mysql

    如何完全删除sql2012_如何完全删除mysql更新文章:由于楼主是在2017年写的内容,当时理解问题不深,可能就是稀里糊涂地解决掉了这个问题,把一些没有与SQL相关的东西都删除了,但那时并不影响到其他程序的运行状况。现如今更新下文章,为避免误导大家进行误删一些东西而存在其他问题的隐患。—感谢一位小伙伴的提醒。—更改时间:2019年3月19日工作忙,没能及时回复大家,请谅解!!卸载方法多种,但是通常会有卸载数据库不干净的情况。虽…

  • opc服务器配置PLC信号,plc配置OPC服务器

    opc服务器配置PLC信号,plc配置OPC服务器plc配置OPC服务器内容精选换一换云耀云服务器(HyperElasticCloudServer,HECS)是可以快速搭建简单应用的新一代云服务器,具备独立、完整的操作系统和网络功能。提供快速应用部署和简易的管理能力,适用于网站搭建、开发环境等低负载应用场景。具有高性价比、易开通、易搭建、易管理的特点。云耀云服务器与弹性云服务器的主要区别:云耀云服务器:云耀云服务器是精简视图提供了云服务器…

  • lnk2019无法解析的外部符号_declspec_error lnk1120无法解析的外部命令

    lnk2019无法解析的外部符号_declspec_error lnk1120无法解析的外部命令1.前言errorLNK2019:无法解析的外部符号这个错之前见过很多次,能知道最根本的原因在于链接过程中没有搜索到程序用到的库文件,即*.lib。笔记本重装了系统,有32Bit升到64Bit,运行VTK程序时,始终报错如下:1>  正在创建库E:\Driverprogram\imgport\Debug\imgport.lib和对象E:\Driverprog

  • E-R图向关系模型的转换_简述ER模型

    E-R图向关系模型的转换_简述ER模型1.实例1:将教学管理ER图转换为关系模式(1)把三个实体类型转换成三个模式:   ①系(系编号,系名,电话)   ②教师(教工号,姓名,性别,职称)   ③课程(课程号,课程名,学分)(2)对于1:1联系“主管”,可以在“系”模式中加入教工号(教工号为外键)。对于1:N联系“聘任”,可以在“教师”模式中加入系编号(系编号为外键)。对于1:N联系“开设”,可以在“课程”模式中加入系编号…

    2022年10月31日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号