Pytorch实战2:ResNet-18实现Cifar-10图像分类(测试集分类准确率95.170%)[通俗易懂]

Pytorch实战2:ResNet-18实现Cifar-10图像分类(测试集分类准确率95.170%)[通俗易懂]版权说明:此文章为本人原创内容,转载请注明出处,谢谢合作!Pytorch实战2:ResNet-18实现Cifar-10图像分类实验环境:Pytorch0.4.0torchvision0.2.1Python3.6CUDA8+cuDNNv7(可选)Win10+Pycharm整个项目代码:点击这里ResNet-18网络结构:ResN…

大家好,又见面了,我是你们的朋友全栈君。

版权说明:此文章为本人原创内容,转载请注明出处,谢谢合作!


Pytorch实战2:ResNet-18实现Cifar-10图像分类

实验环境:

  1. Pytorch 0.4.0
  2. torchvision 0.2.1
  3. Python 3.6
  4. CUDA8+cuDNN v7 (可选)
  5. Win10+Pycharm

整个项目代码:点击这里

ResNet-18网络结构:

这里写图片描述
ResNet全名Residual Network残差网络。Kaiming He 的《Deep Residual Learning for Image Recognition》获得了CVPR最佳论文。他提出的深度残差网络在2015年可以说是洗刷了图像方面的各大比赛,以绝对优势取得了多个比赛的冠军。而且它在保证网络精度的前提下,将网络的深度达到了152层,后来又进一步加到1000的深度。论文的开篇先是说明了深度网络的好处:特征等级随着网络的加深而变高,网络的表达能力也会大大提高。因此论文中提出了一个问题:是否可以通过叠加网络层数来获得一个更好的网络呢?作者经过实验发现,单纯的把网络叠起来的深层网络的效果反而不如合适层数的较浅的网络效果。因此何恺明等人在普通平原网络的基础上增加了一个shortcut, 构成一个residual block。此时拟合目标就变为F(x),F(x)就是残差:
这里写图片描述!

Pytorch上搭建ResNet-18:

'''ResNet-18 Image classfication for cifar-10 with PyTorch Author 'Sun-qian'. '''
import torch
import torch.nn as nn
import torch.nn.functional as F

class ResidualBlock(nn.Module):
    def __init__(self, inchannel, outchannel, stride=1):
        super(ResidualBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(outchannel)
        )
        self.shortcut = nn.Sequential()
        if stride != 1 or inchannel != outchannel:
            self.shortcut = nn.Sequential(
                nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(outchannel)
            )

    def forward(self, x):
        out = self.left(x)
        out += self.shortcut(x)
        out = F.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, ResidualBlock, num_classes=10):
        super(ResNet, self).__init__()
        self.inchannel = 64
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )
        self.layer1 = self.make_layer(ResidualBlock, 64,  2, stride=1)
        self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
        self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
        self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
        self.fc = nn.Linear(512, num_classes)

    def make_layer(self, block, channels, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)   #strides=[1,1]
        layers = []
        for stride in strides:
            layers.append(block(self.inchannel, channels, stride))
            self.inchannel = channels
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out


def ResNet18():

    return ResNet(ResidualBlock)

Pytorch上训练:

所选数据集为Cifar-10,该数据集共有60000张带标签的彩色图像,这些图像尺寸32*32,分为10个类,每类6000张图。这里面有50000张用于训练,每个类5000张,另外10000用于测试,每个类1000张。训练时人为修改学习率,当epoch:[1-135] ,lr=0.1;epoch:[136-185], lr=0.01;epoch:[186-240] ,lr=0.001。训练代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
from resnet import ResNet18
import os

# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #输出结果保存路径
args = parser.parse_args()

# 超参数设置
EPOCH = 135   #遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
BATCH_SIZE = 128      #批处理尺寸(batch_size)
LR = 0.01        #学习率

# 准备数据集并预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),  #先四周填充0,在吧图像随机裁剪成32*32
    transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) #训练数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Cifar-10的标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 模型定义-ResNet
net = ResNet18().to(device)

# 定义损失函数和优化方式
criterion = nn.CrossEntropyLoss()  #损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

# 训练
if __name__ == "__main__":
	if not os.path.exists(args.outf):
		os.makedirs(args.outf)
    best_acc = 85  #2 初始化best test accuracy
    print("Start Training, Resnet-18!")  # 定义遍历数据集的次数
    with open("acc.txt", "w") as f:
        with open("log.txt", "w")as f2:
            for epoch in range(pre_epoch, EPOCH):
                print('\nEpoch: %d' % (epoch + 1))
                net.train()
                sum_loss = 0.0
                correct = 0.0
                total = 0.0
                for i, data in enumerate(trainloader, 0):
                    # 准备数据
                    length = len(trainloader)
                    inputs, labels = data
                    inputs, labels = inputs.to(device), labels.to(device)
                    optimizer.zero_grad()

                    # forward + backward
                    outputs = net(inputs)
                    loss = criterion(outputs, labels)
                    loss.backward()
                    optimizer.step()

                    # 每训练1个batch打印一次loss和准确率
                    sum_loss += loss.item()
                    _, predicted = torch.max(outputs.data, 1)
                    total += labels.size(0)
                    correct += predicted.eq(labels.data).cpu().sum()
                    print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('%03d %05d |Loss: %.03f | Acc: %.3f%% '
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))
                    f2.write('\n')
                    f2.flush()

                # 每训练完一个epoch测试一下准确率
                print("Waiting Test!")
                with torch.no_grad():
                    correct = 0
                    total = 0
                    for data in testloader:
                        net.eval()
                        images, labels = data
                        images, labels = images.to(device), labels.to(device)
                        outputs = net(images)
                        # 取得分最高的那个类 (outputs.data的索引号)
                        _, predicted = torch.max(outputs.data, 1)
                        total += labels.size(0)
                        correct += (predicted == labels).sum()
                    print('测试分类准确率为:%.3f%%' % (100 * correct / total))
                    acc = 100. * correct / total
                    # 将每次测试结果实时写入acc.txt文件中
                    print('Saving model......')
                    torch.save(net.state_dict(), '%s/net_%03d.pth' % (args.outf, epoch + 1))
                    f.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, acc))
                    f.write('\n')
                    f.flush()
                    # 记录最佳测试分类准确率并写入best_acc.txt文件中
                    if acc > best_acc:
                        f3 = open("best_acc.txt", "w")
                        f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
                        f3.close()
                        best_acc = acc
            print("Training Finished, TotalEPOCH=%d" % EPOCH)


实验结果:best_acc= 95.170%

这里写图片描述
(损失图是matlab画的,用保存下来的txt日志)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/141094.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(1)


相关推荐

  • 二分查找法

    序言引在正式的聊二分法之前,我们先来看一下下面的小例子:l.index(66)…我们之所以用index方法可以找到,是因为python帮我们实现了查找方法。如果,index方法不给你用了。。

  • SharedPreferences采用什么方式存储数据_sharedpreferences使用方法

    SharedPreferences采用什么方式存储数据_sharedpreferences使用方法SharedPreferences(简称sp)Android平台上一个轻量级的存储辅助类,它提供了key-value键值对的接口,用来保存应用的一些常用配置,在应用中通常做一些简单数据的持久化缓存。本文将详细的分析SharedPreferences的实现方式、存储机制、如何正确使用它以及sp的性能问题等方面。SharedPreferences实现详解我们在Android开发中,如果想要保存一个相对较小的键值对集合,则应使用SharedPreferencesAPI。SharedPreferences对

  • java 异或加密_Java异或技操作给任意的文件加密原理及使用详解

    java 异或加密_Java异或技操作给任意的文件加密原理及使用详解异或简单介绍:异或是一种基于二进制的位运算,用符号XOR或者^表示,其运算法则是对运算符两侧数的每一个二进制位,同值取0,异值取1。简单理解就是不进位加法,如1+1=0,,0+0=0,1+0=1。需求描述在信息化时代对数据进行加密是一个很重要的主题,在做项目的过程中,我也实现了一个比较复杂的加密算法,但是由于涉及到的技术是保密的,所以在这里我实现一个比较简单的版本,利用文件的输入输出流和异或操…

  • title的中文_上什么下仿

    title的中文_上什么下仿VeryCD主页上的标题上总有一句名言,且是每次刷新变换的,看了一下代码,是用Math.floor(Math.random()*n.length);来实现的,verycd代码中源引的文件是:http://www.verycd.com/statics/title.saying但我所使用的是Windowsserver主机,所以要引用的是js文件,我的代码在这里:http://www.lidec

  • 《这是全网最硬核redis总结,谁赞成,谁反对?》六万字大合集

    后端需要知道的关于redis的事,基本都在这里了。此文后续会改为粉丝可见,所以喜欢的请提前关注。你的点赞和评论是我创作的最大动力,谢谢。《三天给你聊清楚redis》第1天先唠唠redis是个啥(18629字)一、入门Redis是一款基于键值对的NoSQL数据库,它的值支持多种数据结构:字符串(strings)、哈希(hashes)、列表(lists)、集合(sets)、有序集合(sortedsets)等。•Redis将所有的数据都存放在内存中,所以它的读写性能十分惊人,.

  • 实用cmd指令(1)

    实用cmd指令(1)

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号