大家好,又见面了,我是你们的朋友全栈君。
卷积操作的参数量和FLOPs
这里首先需要辨析一个概念就是FLOPs和FLOPS可以看到简写的差别仅仅是一个字母大小写的区别。
FLOPS(floating-point operations per second),这个缩写长这个样子确实也很奇怪,大致概念就是指每秒浮点数运算次数,最后一个S是秒(second)的缩写,是计组中的概念,用来描述计算机的运算速度。
FLOPs(floating-point operations),一旦s变为小写,就表示复数的概念,就是浮点数运算次数,这就和计算量相关了,和卷积或者其他算法联系起来基本上就表示计算次数,可用来衡量操作的复杂程度。
卷积的参数基本上都是说的卷积核的参数,拿一层神经网络来看,卷积核的大小是 ( k h , k w ) (k_h,k_w) (kh,kw),显然一个卷积核的参数量是这个卷积核的矩阵 k h ∗ k w k_h*k_w kh∗kw,通常这里还要加上一个偏置 b b b,算作一个参数,为了简便计算,这里忽略不计,通常b的设置会有差异性。如果说一层神经网络的输入通道数为 C i n C_{in} Cin输出通道数为 C o u t C_{out} Cout,卷积核需要通过矩阵运算,把输入的 C i n C_{in} Cin的通道数映射为输出为 C o u t C_{out} Cout,如果熟悉卷积核矩阵乘法,我们显然知道这个卷积核的参数就是 C i n ∗ k h ∗ k w ∗ C o u t C_{in}*k_h*k_w*C_{out} Cin∗kh∗kw∗Cout,而且需要注意这只是一个卷积核的,如果有多个卷积核的还需要乘数量。
假设我们经过这个卷积,将输入的特征图映射为 ( H , W ) (H,W) (H,W)的特征图,特征图这些部分是我们中间的计算结果,我们不需要当参数保存,所以计算参数不需要包括这部分。但是如果算卷积操作的计算量,则就用得到了。我们通过对一个区域的卷积运算,将这个区域映射为特征图中的一个cell,同样我们想矩阵的乘法,把一个矩阵乘以 { C i n , k h , k w } \left \{ C_{in},k_h,k_w \right \} {
Cin,kh,kw}的卷积核变为一个1乘1的矩阵,可以理解为内积操作,所以得到这一个cell的计算量就是这么多个元素的矩阵的内积操作,显然这个计算量就是 C i n ∗ k h ∗ k w C_{in}*k_h*k_w Cin∗kh∗kw个乘法加 C i n ∗ k h ∗ k w C_{in}*k_h*k_w Cin∗kh∗kw-1个加法。但是显然我们输出的通道数是 C o u t C_{out} Cout,所以我们需要 C o u t C_{out} Cout个这样的操作。这只是求出来一个输出特征图的cell,我们需要求 H ∗ W H*W H∗W个cell,那么最终的计算量还需要再乘上这个值。也就是 ( 2 C i n ∗ k h ∗ k w − 1 ) ∗ C o u t ∗ H ∗ W \left(2C_{in}*k_h*k_w-1\right)*C_{out}*H*W (2Cin∗kh∗kw−1)∗Cout∗H∗W的计算量了。
如果有偏置常数的话,显然这个偏置常数只关系加法,而且是在内积求完之后的,所以相当于加法也变为了 C i n ∗ k h ∗ k w C_{in}*k_h*k_w Cin∗kh∗kw个,没有那个-1,然后这样算出的最终计算量就是 ( 2 C i n ∗ k h ∗ k w ) ∗ C o u t ∗ H ∗ W \left(2C_{in}*k_h*k_w\right)*C_{out}*H*W (2Cin∗kh∗kw)∗Cout∗H∗W
一个cell一个cell的计算卷积,我们可以参考一张解释卷积的图。
衡量计算量除了FLOPs外还有一种概念是求MACs(Multiply Accumulate)乘积累加运算次数,一次乘积,然后把这个乘积和另外一个数求和就叫一次MAC,显然与上面计算结果的关系就在于是否要乘2的关系。
如果在本文中,发现了作者的一些错误,请及时指出,感激不尽。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/140488.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...