OpenCV相机标定全过程

OpenCV相机标定全过程findChessboardCorners()棋盘格角点检测boolfindChessboardCorners(InputArrayimage, SizepatternSize, OutputArraycorners, intflags=CALIB_CB_ADAPTIVE_THRESH+ …

大家好,又见面了,我是你们的朋友全栈君。

一、OpenCV标定的几个常用函数

findChessboardCorners() 棋盘格角点检测

bool findChessboardCorners( InputArray image, 
                                Size patternSize, 
                                OutputArray corners,
                                int flags = CALIB_CB_ADAPTIVE_THRESH + 
                                CALIB_CB_NORMALIZE_IMAGE );

第一个参数是输入的棋盘格图像(可以是8位单通道或三通道图像);
第二个参数是棋盘格内部的角点的行列数(注意:不是棋盘格的行列数,如棋盘格的行列数分别为4、8,而内部角点的行列数分别是3、7,因此这里应该指定为cv::Size(3, 7));
第三个参数是检测到的棋盘格角点,类型为std::vectorcv::Point2f。
第四个参数flag,用于指定在检测棋盘格角点的过程中所应用的一种或多种过滤方法,可以使用下面的一种或多种,如果都是用则使用OR:
cv::CALIB_CB_ADAPTIVE_THRESH:使用自适应阈值将图像转化成二值图像
cv::CALIB_CB_NORMALIZE_IMAGE:归一化图像灰度系数(用直方图均衡化或者自适应阈值)
cv::CALIB_CB_FILTER_QUADS:在轮廓提取阶段,使用附加条件排除错误的假设
cv::CALIB_CV_FAST_CHECK:快速检测

cv::drawChessboardCorners() 棋盘格角点的绘制

drawChessboardCorners( InputOutputArray image, 
                           Size patternSize,
                           InputArray corners, 
                           bool patternWasFound );

image为8-bit,三通道图像
patternSize,每一行每一列的角
corners,已经检测到的角
patternWasFound,findChessboardCorners的返回值

find4QuadCornerSubpix() 对粗提取的角点进行精确化

find4QuadCornerSubpix( InputArray img, 
                           InputOutputArray corners, 
                           Size region_size );

image源图像
corners,提供角点的初始坐标
region_size: 搜索窗口的一般尺寸

cornerSubPix() 亚像素检测

void cornerSubPix( InputArray image, 
                       InputOutputArray corners,
                       Size winSize, 
                       Size zeroZone,
                       TermCriteria criteria );

image源图像
corners,提供角点的初始坐标,返回更加精确的点
winSize,搜索窗口的一般尺寸,如果winSize=Size(5,5),则search windows为11*11
winSize,死区的一般尺寸,用来避免自相关矩阵的奇点,(-1,-1)表示没有死区
criteria,控制迭代次数和精度

calibrateCamera() 求解摄像机的内在参数和外在参数

double calibrateCamera( InputArrayOfArrays objectPoints,
                            InputArrayOfArrays imagePoints,
                            Size imageSize,
                            InputOutputArray cameraMatrix, 
                            InputOutputArray distCoeffs,
                            OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
                            int flags = 0, 
                            TermCriteria criteria = TermCriteria(TermCriteria::COUNT + 
                            TermCriteria::EPS, 30, DBL_EPSILON) );

objectPoints,世界坐标,用vector<vector>,输入x,y坐标,z坐标为0
imagePoints,图像坐标,vector<vector>
imageSize,图像的大小用于初始化标定摄像机的image的size
cameraMatrix,内参数矩阵
distCoeffs,畸变矩阵
rvecs,位移向量
tvecs,旋转向量
flags,可以组合:
CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,将包含有效的fx,fy,cx,cy的估计值的内参矩阵cameraMatrix,作为初始值输入,然后函数对其做进一步优化。如果不使用这个参数,用图像的中心点初始化光轴点坐标(cx, cy),使用最小二乘估算出fx,fy(这种求法好像和张正友的论文不一样,不知道为何要这样处理)。注意,如果已知内部参数(内参矩阵和畸变系数),就不需要使用这个函数来估计外参,可以使用solvepnp()函数计算外参数矩阵。

CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点,光轴点将保持为图像的中心点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,保持为输入的值。

CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当
CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy的实际输入值将会被忽略,只有fx/fy的比值被计算和使用。

CV_CALIB_ZERO_TANGENT_DIST:切向畸变系数(P1,P2)被设置为零并保持为零。

CV_CALIB_FIX_K1,…,CV_CALIB_FIX_K6:对应的径向畸变系数在优化中保持不变。如果设置了CV_CALIB_USE_INTRINSIC_GUESS参数,就从提供的畸变系数矩阵中得到。否则,设置为0。

CV_CALIB_RATIONAL_MODEL(理想模型):启用畸变k4,k5,k6三个畸变参数。使标定函数使用有理模型,返回8个系数。如果没有设置,则只计算其它5个畸变参数。

CALIB_THIN_PRISM_MODEL (薄棱镜畸变模型):启用畸变系数S1、S2、S3和S4。使标定函数使用薄棱柱模型并返回12个系数。如果不设置标志,则函数计算并返回只有5个失真系数。

CALIB_FIX_S1_S2_S3_S4 :优化过程中不改变薄棱镜畸变系数S1、S2、S3、S4。如果cv_calib_use_intrinsic_guess设置,使用提供的畸变系数矩阵中的值。否则,设置为0。

CALIB_TILTED_MODEL (倾斜模型):启用畸变系数tauX and tauY。标定函数使用倾斜传感器模型并返回14个系数。如果不设置标志,则函数计算并返回只有5个失真系数。

CALIB_FIX_TAUX_TAUY :在优化过程中,倾斜传感器模型的系数不被改变。如果cv_calib_use_intrinsic_guess设置,从提供的畸变系数矩阵中得到。否则,设置为0。

initUndistortRectifyMap() 计算畸变参数

void initUndistortRectifyMap(InputArray cameraMatrix, 
                                InputArray distCoeffs, 
                                InputArray R, 
                                InputArray newCameraMatrix, 
                                Size size, 
                                int m1type, 
                                OutputArray map1, 
                                OutputArray map2)

cameraMatrix,摄像机内参数矩阵
distCoeffs, 摄像机的5个畸变系数,(k1,k2,p1,p2[,k3[,k4,k5,k6]])
R,在客观空间中的转换对象
newCameraMatrix,新的3*3的浮点型矩矩阵
size,为失真图像的大小
m1type,第一个输出的map,类型为CV_32FC1或CV_16SC2
map1,x映射函数
map2,y映射函数

二、绘制棋盘格,拍摄照片

这里自己画一个棋盘格用作标定,长度为1280像素,宽490像素,横向10方格,纵向7方格

std_cb = Vision::makeCheckerboard(1280, 490, 10, 7, 0, 
(char *)"../blizzard/res/calibration/std_cb.png");

效果如图
在这里插入图片描述

Vision是我个人创建的视觉类,可以用来绘制标准的棋盘格。
头文件vision.h

//
// Created by czh on 18-10-16.
//

#ifndef OPENGL_PRO_VISION_H
#define OPENGL_PRO_VISION_H

#include "opencv2/opencv.hpp"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgcodecs/imgcodecs.hpp>

#include "iostream"

class Vision {
public:
    static cv::Mat read(std::string file_path, int flags = cv::IMREAD_ANYCOLOR | cv::IMREAD_ANYDEPTH);

    static cv::Mat write(std::string file_path, int flags = cv::IMREAD_ANYCOLOR | cv::IMREAD_ANYDEPTH);

    static void dispConfig(cv::Mat img);

    static cv::Mat makeCheckerboard(int bkgWidth, int bkgHeight, int sqXnum, int sqYnum = 0, int borderThickness = 0, char *savePath = NULL);
private:

};

#endif //OPENGL_PRO_VISION_H

源文件vision.cpp

//
// Created by czh on 18-10-16.
//

#include "vision.h"
#include "string.h"

using namespace std;
using namespace cv;

const char *findName(const char *ch) {
    const char *name = strrchr(ch, '/');
    return ++name;
}

cv::Mat Vision::read(std::string file_path, int flags) {
    printf("#Vision read\n");
    cv::Mat img;
    img = cv::imread(file_path, flags);
    if (img.data == NULL) {
        printf("\tError:vision read\n");
    } else {
        dispConfig(img);
    }
    return img;
}

void Vision::dispConfig(cv::Mat img) {
    printf("\tpixel:%d*%d, channels:%d\n", img.size().width, img.size().height, img.channels());
}

cv::Mat Vision::makeCheckerboard(int bkgWidth, int bkgHeight, int sqXnum, int sqYnum, int thickNum, char *savePath) {
    if(sqYnum == 0){
        sqYnum = sqXnum;
    }
    if(savePath == NULL){
        char *defaultPath = (char *)"../res/calibration/maths.png";
        savePath = defaultPath;
    }
    int checkboardX = 0;//棋盘x坐标
    int checkboardY = 0;//棋盘y坐标
    int xLen = bkgWidth / sqXnum;//x方格长度
    int yLen = bkgHeight / sqYnum;//y方格长度
    cv::Mat img(bkgHeight + thickNum * 2, bkgWidth + thickNum * 2, CV_8UC4, cv::Scalar(0, 255, 255, 255));
    for (int i = 0; i < img.rows; i++) {

        for (int j = 0; j < img.cols; j++) {

            if (i < thickNum || i >= thickNum + bkgHeight || j < thickNum || j >= thickNum + bkgWidth) {
                img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
                continue;
            }
            checkboardX = j - thickNum;
            checkboardY = i - thickNum;
            if (checkboardY / yLen % 2 == 0) {
                if ((checkboardX) / xLen % 2 == 0) {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(255, 255, 255, 255);
                } else {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
                }
            }
            else{
                if ((checkboardX) / xLen % 2 != 0) {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(255, 255, 255, 255);
                } else {
                    img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
                }
            }
        }
    }
    imwrite(savePath, img);    //保存生成的图片
    printf("#makeCheckerboard %d*%d\n", bkgWidth + thickNum, bkgHeight + thickNum);
    return img;
}

用A4纸打印棋盘格,相机拍摄照片。
我偷懒,拿了别人的标定照片
在这里插入图片描述

三、相机标定

下面是相机标定代码

cv::imwrite("../blizzard/res/calibration/cb_source.png", cb_source);

    printf("#Start scan corner\n");
    cv::Mat img;
    std::vector<cv::Point2f> image_points;
    std::vector<std::vector<cv::Point2f>> image_points_seq; /* 保存检测到的所有角点 */
    if (cv::findChessboardCorners(cb_source, cv::Size(aqXnum, aqYnum), image_points, 0) == 0) {
        printf("#Error: Corners not find ");
        return 0;
    } else {
        cvtColor(cb_source, img, CV_RGBA2GRAY);
        cv::imwrite("../blizzard/res/calibration/cb_gray.png", img);
        //find4QuadCornerSubpix(img, image_points, cv::Size(5, 5));

        cv::cornerSubPix(img, image_points, cv::Size(11, 11), cv::Size(-1, -1),
                         cv::TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 30, 0.01));

        image_points_seq.push_back(image_points);

        cv::Mat cb_corner;
        cb_corner = cb_source.clone();
        drawChessboardCorners(cb_corner, cv::Size(aqXnum, aqYnum), image_points, true);
        cv::imwrite("../blizzard/res/calibration/cb_corner.png", cb_corner);
    }

    printf("#Start calibrate\n");
    cv::Size square_size = cv::Size(14.2222, 12);
    std::vector<std::vector<cv::Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
    cv::Mat cameraMatrix = cv::Mat(3, 3, CV_32FC1, cv::Scalar::all(0)); /* 摄像机内参数矩阵 */
    cv::Mat distCoeffs = cv::Mat(1, 5, CV_32FC1, cv::Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
    std::vector<cv::Mat> tvecsMat;  /* 每幅图像的旋转向量 */
    std::vector<cv::Mat> rvecsMat;  /* 每幅图像的平移向量 */

    std::vector<cv::Point3f> realPoint;
    for (int i = 0; i < aqYnum; i++) {
        for (int j = 0; j < aqXnum; j++) {
            cv::Point3f tempPoint;
            /* 假设标定板放在世界坐标系中z=0的平面上 */
            tempPoint.x = i * square_size.width;
            tempPoint.y = j * square_size.height;
            tempPoint.z = 0;
            realPoint.push_back(tempPoint);
        }
    }
    object_points.push_back(realPoint);

    printf("#objectPoints: %ld\n", sizeof(object_points[0]));
    std::cout << object_points[0] << std::endl;

    printf("#image_points: %ld\n", sizeof(image_points_seq[0]));
    std::cout << image_points << std::endl;

    printf("#image size\n");
    std::cout << SCREEN_WIDTH << "*" << SCREEN_HEIGHT << std::endl;

    cv::calibrateCamera(object_points, image_points_seq, cb_source.size(), cameraMatrix, distCoeffs, rvecsMat, tvecsMat,
                        CV_CALIB_FIX_K3);

    std::cout << "tvecsMat:\n" << tvecsMat[0] << std::endl;
    std::cout << "rvecsMat:\n" << rvecsMat[0] << std::endl;

    std::cout << "#cameraMatrix:\n" << cameraMatrix << std::endl;
    std::cout << "#distCoeffs:\n" << distCoeffs << std::endl;

四、对图片进行校正

	cv::Mat cb_final;

    cv::Mat mapx = cv::Mat(cb_source.size(), CV_32FC1);
    cv::Mat mapy = cv::Mat(cb_source.size(), CV_32FC1);
    cv::Mat R = cv::Mat::eye(3, 3, CV_32F);
    //initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cv::Mat(), cb_source.size(), CV_32FC1,
    //                        mapx, mapy);
    //cv::remap(cb_source, cb_final, mapx, mapy, cv::INTER_LINEAR);

    undistort(cb_source, cb_final, cameraMatrix, distCoeffs);
    
    cv::imwrite("../blizzard/res/calibration/cb_final.png", cb_final);

1.校正前的图片
在这里插入图片描述
2.校正后的图片
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/140316.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • stat 文件_readlink函数

    stat 文件_readlink函数statstat函数主要用于获取文件的inode信息。stat命令其实就是调用的stat函数。stat中时间的辨析atime(最近访问时间)mtime(最近更改时间):指最近修改文件内容的时间ctime(最近改动时间):指最近改动inode的时间1)chmod777stat_1.txtstat之后发现ctime变了。改变了文件的权限,文件权限保存在inode里面。2)vims

  • c#键盘钩子全解

    c#键盘钩子全解usingSystem;usingSystem.Collections.Generic;usingSystem.Text;usingSystem.Runtime.InteropServices;//调用操作系统动态链接库usingSystem.Reflection;usingSystem.Diagnostics;usingMicrosoft.Win32;usingSys

  • 数据库锁表如何解决_mysql数据库怎么解锁

    数据库锁表如何解决_mysql数据库怎么解锁这个问题之前遇到过一次,但是由于不知道导致锁表的原因,也没细想,就知道表被锁了,然后让别人把表给解锁了。但是前天的一次操作,让我亲眼见证了导致锁表的过程,以及如何给lock的表解锁。1.导致锁表的原因(同志们也可以参考是不是也是同样的操作啊。。。):1.1首先是大前提我们正常的框架在service层都会有事物控制,比如我一个service层的方法要执行更新两张表,这两个表只有同…

  • jQuery实现返回顶部功能[通俗易懂]

    jQuery实现返回顶部功能[通俗易懂]jQuery实现返回顶部功能整理两个实现功能,一个是右下角的返回顶部,一个是右侧的返回顶部,分别如图第一种实现一、JSP或HTML(主体结构)在body中添加

  • Yii2使用教程_yii2 rbac

    Yii2使用教程_yii2 rbachttps://www.cnblogs.com/chengbocd/p/6125533.htmlhttps://www.yiichina.com/doc/guide/2.0/start-giiht

  • HTML空格符_HTML中什么表示特殊字符空格

    HTML空格符_HTML中什么表示特殊字符空格html+css代码在网页中如何插入打出空格字符实现方法摘要浏览器总是会截短HTML页面中的空格。HTML将所有空格字符,制表符,空格和回车符压缩为一个字符。如果要缩进段落,则不能简单地键入五个空格然后开始文本。如果您在文本中写10个空格,在显示该页面之前,浏览器会删除它们中的9个。如需在页面中增加空格的数量,您需要使用&nbsp;字符实体。本篇就单介绍…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号