openCV人脸识别简单案例[通俗易懂]

openCV人脸识别简单案例[通俗易懂]1基础我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的Haar特征会被使用,就像我们的卷积核,每一个特征是一个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。Haar特征可用于于图像任意位置,大小也可以任意改变,所以矩形特征值是

大家好,又见面了,我是你们的朋友全栈君。

1 基础

我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核,每一个特征是一 个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。

image-20191014152218924

Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。

Haar特征可用于于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数。故类别、大小和位置的变化,使得很小的检测窗口含有非常多的矩形特征。

image-20191014152716626

得到图像的特征后,训练一个决策树构建的adaboost级联决策器来识别是否为人脸。

image-20191014160504382

2.实现

OpenCV中自带已训练好的检测器,包括面部,眼睛,猫脸等,都保存在XML文件中,我们可以通过以下程序找到他们:

import cv2 as cv
print(cv.__file__)

找到的文件如下所示:

image-20191014160719733

那我们就利用这些文件来识别人脸,眼睛等。检测流程如下:

  1. 读取图片,并转换成灰度图

  2. 实例化人脸和眼睛检测的分类器对象

    # 实例化级联分类器
    classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
    # 加载分类器
    classifier.load('haarcascade_frontalface_default.xml')
    
  3. 进行人脸和眼睛的检测

    rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)
    

    参数:

    • Gray: 要进行检测的人脸图像
    • scaleFactor: 前后两次扫描中,搜索窗口的比例系数
    • minneighbors:目标至少被检测到minNeighbors次才会被认为是目标
    • minsize和maxsize: 目标的最小尺寸和最大尺寸
  4. 将检测结果绘制出来就可以了。

主程序如下所示:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.以灰度图的形式读取图片
img = cv.imread("16.jpg")
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

# 2.实例化OpenCV人脸和眼睛识别的分类器 
face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
face_cas.load('haarcascade_frontalface_default.xml')

eyes_cas = cv.CascadeClassifier("haarcascade_eye.xml")
eyes_cas.load("haarcascade_eye.xml")

# 3.调用识别人脸 
faceRects = face_cas.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) 
for faceRect in faceRects: 
    x, y, w, h = faceRect 
    # 框出人脸 
    cv.rectangle(img, (x, y), (x + h, y + w),(0,255,0), 3) 
    # 4.在识别出的人脸中进行眼睛的检测
    roi_color = img[y:y+h, x:x+w]
    roi_gray = gray[y:y+h, x:x+w]
    eyes = eyes_cas.detectMultiScale(roi_gray) 
    for (ex,ey,ew,eh) in eyes:
        cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
# 5. 检测结果的绘制
plt.figure(figsize=(8,6),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('检测结果')
plt.xticks([]), plt.yticks([])
plt.show()

结果:

image-20191014164455020

我们也可在视频中对人脸进行检测:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.读取视频
cap = cv.VideoCapture("movie.mp4")
# 2.在每一帧数据中进行人脸识别
while(cap.isOpened()):
    ret, frame = cap.read()
    if ret==True:
        gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
        # 3.实例化OpenCV人脸识别的分类器 
        face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
        face_cas.load('haarcascade_frontalface_default.xml')
        # 4.调用识别人脸 
        faceRects = face_cas.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) 
        for faceRect in faceRects: 
            x, y, w, h = faceRect 
            # 框出人脸 
            cv.rectangle(frame, (x, y), (x + h, y + w),(0,255,0), 3) 
        cv.imshow("frame",frame)
        if cv.waitKey(1) & 0xFF == ord('q'):
            break
# 5. 释放资源
cap.release()  
cv.destroyAllWindows()

总结

opencv中人脸识别的流程是:

  1. 读取图片,并转换成灰度图
  2. 实例化人脸和眼睛检测的分类器对象
# 实例化级联分类器
classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
# 加载分类器
classifier.load('haarcascade_frontalface_default.xml')
  1. 进行人脸和眼睛的检测
rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)
  1. 将检测结果绘制出来就可以了。

我们也可以在视频中进行人脸识别

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/140024.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • redis和jedis区别_redis和数据库的区别

    redis和jedis区别_redis和数据库的区别Redis与Spring的整合一般分为spring-data-redis和jedis整合,两者的区别在于:1.引入的依赖不同spring-data-redis引入的是<dependency><groupId>org.springframework.data</groupId><artifactId>spring-data-redis</artifactId></dependency>jedis引入的是:&

  • MyBatis缓存机制详解

    MyBatis缓存机制详解MyBatis缓存机制详解1.MyBatis缓存1.1MyBatis缓存概述1.2MyBatis一二级缓存区别2.MyBatis一级缓存2.1MyBatis一级缓存概述2.2MyBatis一级缓存配置2.3MyBatis一级缓存原理分析2.4MyBatis一级缓存总结3.MyBatis二级缓存3.1MyBatis二级缓存概述3.2MyBatis二级缓存配置3.3MyBatis二级缓存原理分析3.4MyBatis二级缓存总结4.MyBatis缓存测试5.参考文档1.MyBat

  • ARM开发环境搭建

    ARM开发环境搭建1.下载E:\ARM开发\工具软件\ARM裸机开发工具\Yagarto工具包路径下两个程序2.下载E:\ARM开发\工具软件\USB转串口驱动\CH3403.下载E:\ARM开发\工具软件\ARM裸机开发工具\JRE4.打开设备管理器->右键->更新5.6.选择E:\ARM开发\工具软件\ARM裸机开发工具\DRIVER目录下的(注意:此操作win7环境下,win7以上还要有点其他步骤)选择好就点你下一步7.出现红色弹窗点8.完成9.在E:\ARM开发\工具

  • python tkinter窗口美化_jquery进度条插件

    python tkinter窗口美化_jquery进度条插件前言在我们进行自动化测试的时候,用例往往是成百上千,执行的时间是几十分钟或者是小时级别。有时,我们在调试那么多用例的时候,不知道执行到什么程度了,而pytest-sugar插件能很好解决我们的痛点。

  • Wix 安装部署教程(七) 获取管理员权限

    Wix 安装部署教程(七) 获取管理员权限

  • 电信光猫桥接模式设置之后iptv机顶盒怎么连接路由器_光猫桥接改回路由模式

    电信光猫桥接模式设置之后iptv机顶盒怎么连接路由器_光猫桥接改回路由模式电信天翼网关TEWA-700G,进入管理员权限设置为桥接模式。

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号