FIR 带通滤波器参数设计流程

FIR 带通滤波器参数设计流程假设有一段10kHz的语言,现需要对2~3kHz之间的语言信号进行提取,要求1.5kHz及3.5kHz以上的频率需要有40dB的衰减1、求数字频率指标通带下边频:wpl=2∗π∗fpl/fs=0.4πw_{pl}=2*\pi*f_{pl}/f_s=0.4\piwpl​=2∗π∗fpl​/fs​=0.4π通带上边频:wph=2∗π∗fph/fs=0.6πw_{ph}=2*\pi*f_{ph}/f_s=0.6\piwph​=2∗π∗fph​/fs​=0.6π下阻带上变频:wsl=2∗π∗fsl

大家好,又见面了,我是你们的朋友全栈君。

假设有一段10kHz的语言,现需要对2~3kHz之间的语言信号进行提取,要求1.5kHz及3.5kHz以上的频率需要有40dB的衰减

1、求数字频率指标

通带下边频:
w p l = 2 ∗ π ∗ f p l / f s = 0.4 π w_{pl}=2*\pi *f_{pl}/f_s=0.4\pi wpl=2πfpl/fs=0.4π
通带上边频:
w p h = 2 ∗ π ∗ f p h / f s = 0.6 π w_{ph}=2*\pi *f_{ph}/f_s=0.6\pi wph=2πfph/fs=0.6π
下阻带上变频:
w s l = 2 ∗ π ∗ f s l / f s = 0.3 π w_{sl}=2*\pi *f_{sl}/f_s=0.3\pi wsl=2πfsl/fs=0.3π
上阻带下变频:
w s h = 2 ∗ π ∗ f s h / f s = 0.7 π w_{sh}=2*\pi *f_{sh}/f_s=0.7\pi wsh=2πfsh/fs=0.7π

2、选取窗函数

在这里插入图片描述

根据阻带衰减查表,可选汉宁窗,过度带宽 Δ w = w p l − w s l = 0.1 π \Delta_w=w_{pl}-w_{sl}=0.1\pi Δw=wplwsl=0.1π
由汉宁窗过度带宽确定阶数N
N = 6.2 π / Δ w = 62 N=6.2\pi/\Delta_w=62 N=6.2π/Δw=62
取N为奇数N=63
a = ( N − 1 ) / 2 a = (N-1)/2 a=(N1)/2
因此窗函数:
w ( n ) = 1 2 [ 1 − c o s ( 2 π n a ) ] w(n)=\frac{1}{2}[1-cos(\frac{2\pi n}{a})] w(n)=21[1cos(a2πn)]

3、求理想带通滤波器的单位脉冲响应

理想带通滤波器的截止频率:
w c l = ( w p l + w s l ) / 2 w_{cl}=(w_{pl}+w_{sl})/2 wcl=(wpl+wsl)/2
w c h = ( w p h + w s h ) / 2 w_{ch}=(w_{ph}+w_{sh})/2 wch=(wph+wsh)/2
理想带通滤波器的单位脉冲响应:

h d ( n ) = s i n [ w c h ∗ ( n − a ) ] − s i n [ w c l ∗ ( n − a ) ] π ∗ ( n − a ) h_d(n)=\frac{sin[w_{ch}*(n-a)]-sin[w_{cl}*(n-a)]}{\pi*(n-a)} hd(n)=π(na)sin[wch(na)]sin[wcl(na)]

4、求FIR滤波参数

h ( n ) = h d ( n ) w ( n ) h(n)=h_d(n)w(n) h(n)=hd(n)w(n)

5、算法仿真

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from scipy.fftpack import fft,ifft
from decimal import Decimal
import matplotlib
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['font.family']='sans-serif'
class filter:
def __init__(self,h):
self.order=len(h)
self.h=h
self.output=[]
def FIR_Filter(self,vi):
for i in range(len(vi)):
sum=0
if i < self.order:
for j in range(i):
sum=sum + self.h[j]*vi[i-j]
else:      
for j in range(self.order):
sum=sum + self.h[j]*vi[i-j]
self.output.append(sum)   
return self.output
#采样为10Khz
#1.5khz以下及3.5khz以上至少40db的衰减
f_sl = 1500
f_sh = 3500
f_pl = 2000
f_ph = 3000
f_s  = 10000
#通带下边频
W_pl = 2*np.pi*f_pl/f_s
W_ph = 2*np.pi*f_ph/f_s
W_sl = 2*np.pi*f_sl/f_s
W_sh = 2*np.pi*f_sh/f_s
W_D = W_pl - W_sl
N = 6.2*np.pi/(W_D)
if N%2==0:
N=N+1
print(N)
a = (N-1)/2
n=np.linspace(0,N-1,N)
R_n =  1
#汉宁窗口函数
w_n = 0.5*(1-np.cos(2*np.pi*n/(N-1)))
W_cl = (W_pl+W_sl)/2
W_ch = (W_ph+W_sh)/2
#用一个靠近a的小数将a值替换掉,避免出现除0的情况
a=30.9999999999
h_d  = (np.sin(W_ch*(n-a))-np.sin(W_cl*(n-a)))/(2*np.pi*(n-a))
h_c = h_d*w_n
numtaps=63
array= h_c
plt.figure(1)
yy_1=fft(array)                     #快速傅里叶变换
yf_1=abs(fft(array))                # 取模
yf1_1=abs(fft(array))/((len(array)/2))           #归一化处理
yf2_1 = yf1_1[range(int(len(array)/2))]  #由于对称性,只取一半区间
#plt.plot(h_d,'b')
plt.subplot(221)
plt.title('滤波系数')  # 定义标题
plt.plot(array,'g')
plt.plot(h_c,'K')
plt.subplot(222)
plt.title('滤波系数FFT')  # 定义标题
plt.plot(yf2_1,'r')
plt.show()
x=np.linspace(0,1,f_s)
signal_array = np.sin(2*np.pi*2000*x)
for i in range(10):
if 1000*i != 2000:
signal_array+=np.sin(2*np.pi*1000*x*i)#+np.sin(2*np.pi*175*x)+np.sin(2*np.pi*350*x)+np.sin(2*np.pi*500*x)
plt.figure(2)        
Weight = array
FIR_filter=filter(Weight)
output = FIR_filter.FIR_Filter(signal_array)   
y=  signal_array
xf = np.arange(len(y)) 
yy=fft(y)                     #快速傅里叶变换
yf=abs(fft(y))                # 取模
yf1=abs(fft(y))/((len(x)/2))           #归一化处理
yf2 = yf1[range(int(len(x)/2))]  #由于对称性,只取一半区间
plt.subplot(221)
plt.title('原始信号')  # 定义标题
plt.plot(xf,signal_array,'b') #显示原始信号的FFT模值
plt.subplot(222)
plt.title('原始信号FFT')  # 定义标题
plt.plot(xf,yf1,'r') #显示原始信号的FFT模值
yy_1=fft(output)                     #快速傅里叶变换
yf_1=abs(fft(output))                # 取模
yf1_1=abs(fft(output))/((len(x)/2))           #归一化处理
yf2_1 = yf1_1[range(int(len(x)/2))]  #由于对称性,只取一半区间
plt.subplot(223)
plt.title('滤波后的信号')  # 定义标题
plt.plot(xf,output,'b') 
plt.subplot(224)
plt.title('滤波后的信号FFT')  # 定义标题
plt.plot(xf,yf1_1,'r') #显示原始信号的FFT模值

6、算法结果

在这里插入图片描述

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/138893.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 转 -如何改变*.sln文件的路径「建议收藏」

    转 -如何改变*.sln文件的路径「建议收藏」工具-》选项—》项目和解决方案,可以设置项目和解决方案的目录。选中解决方案,点击文件,可以出现,*.sln另存为的选项转载于:https://www.cnblogs.com/9421/archive/2010/02/01/1660764.html…

  • Cover Letter & Response Letter

    Cover Letter & Response Letter1.CoverLetterCoverLetter是写给期刊编辑、用于描述投稿论文的创新与工作内容,明确地告知编辑稿件的研究内容与期刊刊物领域契合度,并作一些额外的陈述和声明(比如,不存在一稿多投的声明,投稿的期刊存在预印本的声明,推荐的审稿人等)。大部分期刊投稿的时候都会要求独立提交一份CoverLetter,或者是在投稿流程中有一个写给编辑的文本框,把CoverLetter的内容直接粘进去。CoverLetter的内容在于浓缩手稿的摘要、研究方法、研究结果和结论,需要简明扼要的表达出论

  • 随机森林(原理/样例实现/参数调优)

    决策树决策树与随机森林都属于机器学习中监督学习的范畴,主要用于分类问题。决策树算法有这几种:ID3、C4.5、CART,基于决策树的算法有bagging、随机森林、GBDT等。决策树是一种利用树形结构进行决策的算法,对于样本数据根据已知条件或叫特征进行分叉,最终建立一棵树,树的叶子结节标识最终决策。新来的数据便可以根据这棵树进行判断。随机森林是一种通过多棵决策树进行优化决策的算法。案例:

  • FPGA之ODDR「建议收藏」

    通过oddr把两路单端的数据合并到一路上输出上下沿同时输出数据上沿输出a路下沿输出b路 如果两路输入信号一路恒定为1,一路恒定为0,那么输出的信号实际上就是输入的时钟信号ODDRPrimitive:Adedicatedoutputregistertotransmitdualdatarate(DDR)signalsfromV

  • php phantomjs 截屏,phantomjs截图

    php phantomjs 截屏,phantomjs截图废话不多说,直接上代码。功能:随便截取一个url页面:https://www.baidu.com/s?word=phantomjs+%E6%88%AA%E5%9B%BE&tn=43061099_196_hao_pg&ie=utf-8&ssl_sample=hao_1phantomjs的js环境test.jssystem=require(‘system’)address…

  • Visio2003密钥(office 2003密钥)

    序列号:GWH28-DGCMP-P6RC4-6J4MT-3HFDY序列号:WFDWY-XQXJF-RHRYG-BG7RQ-BBDHM

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号