大家好,又见面了,我是你们的朋友全栈君。
SVM除了具有线性分类和非线性分类之外,还支持回归(SVR)。与传统的回归问题有所不同,在定义损失的时候,容忍f(x)与y之间有一定的偏差,具体推导过程如下图。由于回归问题引入了容忍偏差,松弛变量,式子相较于SVM分类更复杂一些,但是总体的求解思路是一致的,包括:定义目标函数、目标函数转换为无约束优化问题、对偶问题、SMO求解α,根据KKT条件找支持向量并计算b。
上图中把W带入化简过程已省略,感兴趣的可以自己推一下,与SVM分类的化简过程相似,本人偷了个懒…
最近计划把所有常用的机器学习算法都从头到尾手写一遍,以后关于机器学习方面的内容大都以图片的形式展现,如果阅读困难可以留言交流,提前祝大家六一儿童节快乐,也祝我的母校110周年生日快乐!
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/138532.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...