快速使用 BERT 生成词向量:bert-as-service

快速使用 BERT 生成词向量:bert-as-serviceBERT模型是一种NLP预训练技术,本文不介绍BERT的原理,主要关注如何快速上手使用BERT模型生成词向量用于下游任务。Google已经公开了TensorFlow版本的预训练模型和代码,可以用于生成词向量,但是还有更简单的方法:直接调用封装好的库bert-as-service。使用bert-as-service生成词向量bert-as-service是腾讯…

大家好,又见面了,我是你们的朋友全栈君。

BERT 模型是一种 NLP 预训练技术,本文不介绍 BERT 的原理,主要关注如何快速上手使用 BERT 模型生成词向量用于下游任务。

Google 已经公开了 TensorFlow 版本的预训练模型和代码,可以用于生成词向量,但是还有更简单的方法:直接调用封装好的库 bert-as-service 。

在这里插入图片描述

使用 bert-as-service 生成词向量

bert-as-service 是腾讯 AI Lab 开源的一个 BERT 服务,它让用户可以以调用服务的方式使用 BERT 模型而不需要关注 BERT 的实现细节。bert-as-service 分为客户端和服务端,用户可以从 python 代码中调用服务,也可以通过 http 的方式访问。

安装

使用 pip 命令进行安装,客户端与服务端可以安装在不同的机器上:

pip install bert-serving-server # 服务端

pip install bert-serving-client # 客户端,与服务端互相独立

其中,服务端的运行环境为 Python >= 3.5Tensorflow >= 1.10

客户端可以运行于 Python 2 或 Python 3

下载预训练模型

根据 NLP 任务的类型和规模不同,Google 提供了多种预训练模型供选择:

也可以使用中文效果更好的哈工大版 BERT:

以上列出了几个常用的预训练模型,可以到 这里 查看更多。

解压下载到的 .zip 文件以后,会有 6 个文件:

  1. TensorFlow 模型文件(bert_model.ckpt) 包含预训练模型的权重,模型文件有三个
  2. 字典文件(vocab.txt) 记录词条与 id 的映射关系
  3. 配置文件(bert_config.json ) 记录模型的超参数

启动 BERT 服务

使用 bert-serving-start 命令启动服务:

bert-serving-start -model_dir /tmp/english_L-12_H-768_A-12/ -num_worker=2

其中,-model_dir 是预训练模型的路径,-num_worker 是线程数,表示同时可以处理多少个并发请求

如果启动成功,服务器端会显示:

在这里插入图片描述

在客户端获取句向量

可以简单的使用以下代码获取语料的向量表示:

from bert_serving.client import BertClient
bc = BertClient()
doc_vecs = bc.encode(['First do it', 'then do it right', 'then do it better'])

doc_vecs 是一个 numpy.ndarray ,它的每一行是一个固定长度的句子向量,长度由输入句子的最大长度决定。如果要指定长度,可以在启动服务使用 max_seq_len 参数,过长的句子会被从右端截断。

BERT 的另一个特性是可以获取一对句子的向量,句子之间使用 ||| 作为分隔,例如:

bc.encode(['First do it ||| then do it right'])

获取词向量

启动服务时将参数 pooling_strategy 设置为 None :

bert-serving-start -pooling_strategy NONE -model_dir /tmp/english_L-12_H-768_A-12/

这时的返回是语料中每个 token 对应 embedding 的矩阵

bc = BertClient()
vec = bc.encode(['hey you', 'whats up?'])

vec  # [2, 25, 768]
vec[0]  # [1, 25, 768], sentence embeddings for `hey you`
vec[0][0]  # [1, 1, 768], word embedding for `[CLS]`
vec[0][1]  # [1, 1, 768], word embedding for `hey`
vec[0][2]  # [1, 1, 768], word embedding for `you`
vec[0][3]  # [1, 1, 768], word embedding for `[SEP]`
vec[0][4]  # [1, 1, 768], word embedding for padding symbol
vec[0][25]  # error, out of index!

远程调用 BERT 服务

可以从一台机器上调用另一台机器的 BERT 服务:

# on another CPU machine
from bert_serving.client import BertClient
bc = BertClient(ip='xx.xx.xx.xx')  # ip address of the GPU machine
bc.encode(['First do it', 'then do it right', 'then do it better'])

这个例子中,只需要在客户端 pip install -U bert-serving-client

其他

配置要求

BERT 模型对内存有比较高的要求,如果启动时一直卡在 load graph from model_dir 可以将 num_worker 设置为 1 或者加大机器内存。

处理中文是否要提前分词

在计算中文向量时,可以直接输入整个句子不需要提前分词。因为 Chinese-BERT 中,语料是以字为单位处理的,因此对于中文语料来说输出的是字向量。

举个例子,当用户输入:

bc.encode(['hey you', 'whats up?', '你好么?', '我 还 可以'])

实际上,BERT 模型的输入是:

tokens: [CLS] hey you [SEP]
input_ids: 101 13153 8357 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] what ##s up ? [SEP]
input_ids: 101 9100 8118 8644 136 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] 你 好 么 ? [SEP]
input_ids: 101 872 1962 720 8043 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

tokens: [CLS] 我 还 可 以 [SEP]
input_ids: 101 2769 6820 1377 809 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
input_mask: 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

在英语中词条化后的 ##something 是什么

当某个词在不在词典中时,使用最长子序列的方法进行词条化,例如:

input = "unaffable"
tokenizer_output = ["un", "##aff", "##able"]

参考资料

  1. https://github.com/google-research/bert
  2. https://github.com/hanxiao/bert-as-service

知识共享许可协议
本作品采用知识共享署名-非商业性使用 3.0 未本地化版本许可协议进行许可。欢迎转载,演绎,但是必须保留本文的链接,不得用于商业目的。如您有任何疑问或者授权方面的协商,请与我联系

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/137750.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • UIControl-IOS开发

    UIControl-IOS开发

  • EFK(Elasticsearch+Filebeat+Kibana)日志收集系统

    EFK(Elasticsearch+Filebeat+Kibana)日志收集系统

  • docker(11)Dockerfile 中的COPY与ADD 命令「建议收藏」

    docker(11)Dockerfile 中的COPY与ADD 命令「建议收藏」前言Dockerfile中提供了两个非常相似的命令COPY和ADD,本文尝试解释这两个命令的基本功能,以及其异同点,然后总结其各自适合的应用场景。Build上下文的概念在使用dock

  • 利用Python制作微信机器人(一)

    利用Python制作微信机器人(一)双十一时候,阿里云服务器打折。于是直接买了三年的阿里云服务器。自己也明白有一个云服务器说白了就是有一个公网IP+7*24h不关机的电脑。但买完服务器后,就不知道用这服务器来做点什么炫酷的事情了。这两天看到有某位海王做了个自动回复消息的机器人来给女朋友们回消息,是否可以用这个服务器来做一个自动回复消息的机器人。…

  • 重定向和转发的区别及应用_重定向发给别人能看见吗

    重定向和转发的区别及应用_重定向发给别人能看见吗重定向和转发的区别:一:重定向与转发的区别1.重定向过程:客户端浏览器发送http请求→web服务器接收后发送30X状态码响应及对应新的location给客户浏览器→客户浏览器发现是30X响应,则自动再发送一个新的http请求,请求url是新的location地址→服务器根据此请求寻找资源并发送给客户。//java代码示例response.sendRedirect(“xxx.jsp或者servlet”);2.转发过程:客户端浏览器发送http请求→web服务器接受此请求→

  • JAVA实验室设备管理系统代码_java做一个简单学生管理系统

    JAVA实验室设备管理系统代码_java做一个简单学生管理系统本系统主要采用面向对象的基于B/S架构的设计,开发平台采用myeclipse,程序设计语言采用java语言,并使用三层架构,采用mysql作为后台数据库。实验室设备管理系统基本实现用户与管理员之间的交互,用户查询设备并对自己需要的进行借用,管理员对用户的设备借用进行审核,最后对于设备的维修进行记录。其基本步骤有以下几点:1.需求分析:以本学院为例询问老师和同学得出系统需求,查找并研究资料,熟悉开发…

    2022年10月13日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号