文本分类算法之–贝叶斯文本分类算法[通俗易懂]

文本分类算法之–贝叶斯文本分类算法[通俗易懂]文本分类过程例如文档:GoodgoodstudyDaydayup可以用一个文本特征向量来表示,x=(Good,good,study,Day,day,up)。在文本分类中,假设我们有一个文档d∈X,类别c又称为标签。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={BeijingjoinstheWorldTradeOrganization,C

大家好,又见面了,我是你们的朋友全栈君。

文本分类过程

例如文档:Good good study Day day up可以用一个文本特征向量来表示,x=(Good, good, study, Day, day , up)。在文本分类中,假设我们有一个文档dX,类别c又称为标签。我们把一堆打了标签的文档集合<d,c>作为训练样本,<d,c>X×C。例如:<d,c>={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到 China,即打上china标签。

朴素贝叶斯分类器是一种有监督学习,常见有两种模型,多项式模型(multinomial model)即为词频型和伯努利模型(Bernoulli model)即文档型。二者的计算粒度不一样,多项式模型以单词为粒度,伯努利模型以文件为粒度,因此二者的先验概率和类条件概率的计算方法都不同。计算后验概率时,对于一个文档d,多项式模型中,只有在d中出现过的单词,才会参与后验概率计算,伯努利模型中,没有在d中出现,但是在全局单词表中出现的单词,也会参与计算,不过是作为反方参与的。这里暂不考虑特征抽取、为避免消除测试文档时类条件概率中有为0现象而做的取对数等问题。

2.1多项式模型

1)基本原理

在多项式模型中, 设某文档d=(t1,t2,…,tk)tk是该文档中出现过的单词,允许重复,则

先验概率P(c)= c下单词总数/整个训练样本的单词总数

类条件概率P(tk|c)=(c下单词tk在各个文档中出现过的次数之和+1)/(c下单词总数+|V|)

V是训练样本的单词表(即抽取单词,单词出现多次,只算一个),|V|则表示训练样本包含多少种单词。 P(tk|c)可以看作是单词tk在证明d属于类c上提供了多大的证据,而P(c)则可以认为是类别c在整体上占多大比例(有多大可能性)

2)举例

给定一组分好类的文本训练数据,如下:

docId

doc

类别

In c=China?

1

Chinese Beijing Chinese

yes

2

Chinese Chinese Shanghai

yes

3

Chinese Macao

yes

4

Tokyo Japan Chinese

no

给定一个新样本Chinese Chinese Chinese Tokyo Japan,对其进行分类。该文本用属性向量表示为d=(Chinese, Chinese, Chinese, Tokyo, Japan),类别集合为Y={yes, no}

yes下总共有8个单词,类no下总共有3个单词,训练样本单词总数为11,因此P(yes)=8/11, P(no)=3/11。类条件概率计算如下:

P(Chinese | yes)=(5+1)/(8+6)=6/14=3/7

P(Japan | yes)=P(Tokyo | yes)= (0+1)/(8+6)=1/14

P(Chinese|no)=(1+1)/(3+6)=2/9

P(Japan|no)=P(Tokyo| no) =(1+1)/(3+6)=2/9

分母中的8,是指yes类别下textc的长度,也即训练样本的单词总数,6是指训练样本有Chinese,Beijing,Shanghai, Macao, Tokyo, Japan 6个单词,3是指no类下共有3个单词。

有了以上类条件概率,开始计算后验概率:

P(yes | d)=(3/7)3×1/14×1/14×8/11=108/184877≈0.00058417

P(no | d)= (2/9)3×2/9×2/9×3/11=32/216513≈0.00014780

比较大小,即可知道这个文档属于类别china

2.2伯努利模型

1)基本原理

P(c)= c下文件总数/整个训练样本的文件总数

P(tk|c)=(c下包含单词tk的文件数+1)/(c下样本总数+2)

2)举例

使用前面例子中的数据,模型换成伯努利模型。

yes下总共有3个文件,类no下有1个文件,训练样本文件总数为11,因此P(yes)=3/4, P(Chinese | yes)=(3+1)/(3+2)=4/5,条件概率如下:

P(Japan | yes)=P(Tokyo | yes)=(0+1)/(3+2)=1/5

P(Beijing | yes)= P(Macao|yes)= P(Shanghai |yes)=(1+1)/(3+2)=2/5

P(Chinese|no)=(1+1)/(1+2)=2/3

P(Japan|no)=P(Tokyo| no) =(1+1)/(1+2)=2/3

P(Beijing| no)= P(Macao| no)= P(Shanghai | no)=(0+1)/(1+2)=1/3

有了以上类条件概率,开始计算后验概率,

P(yes|d)=P(yes)×P(Chinese|yes)×P(Japan|yes)×P(Tokyo|yes)×(1-P(Beijing|yes))×(1-P(Shanghai|yes))×(1-P(Macao|yes))=3/4×4/5×1/5×1/5×(1-2/5) ×(1-2/5)×(1-2/5)=81/15625≈0.005

P(no|d)= 1/4×2/3×2/3×2/3×(1-1/3)×(1-1/3)×(1-1/3)=16/729≈0.022

因此,这个文档不属于类别china

后记:文本分类是作为离散型数据的,以前糊涂是把连续型与离散型弄混一块了,朴素贝叶斯用于很多方面,数据就会有连续和离散的,连续型时可用正态分布,还可用区间,将数据的各属性分成几个区间段进行概率计算,测试时看其属性的值在哪个区间就用哪个条件概率。再有TF、TDIDF,这些只是描述事物属性时的不同计算方法,例如文本分类时,可以用单词在本文档中出现的次数描述一个文档,可以用出现还是没出现即0和1来描述,还可以用单词在本类文档中出现的次数与这个单词在剩余类出现的次数(降低此属性对某类的重要性)相结合来表述。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/137748.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 扩大传播面,让网络安全宣传更有力

    扩大传播面,让网络安全宣传更有力

  • linux 查询环境变量_ubuntu查看环境变量

    linux 查询环境变量_ubuntu查看环境变量有时候在编写makefile的时候,自己都不清楚有些变量是什么,也不清楚如何查看,于是感觉有必要在这里写一篇环境变量查看的博文。如果你想查看某一个名称的环境变量,命令是:echo$环境变量名,比如:echo$ORACLE_HOME这是最基础的,下面来讲下稍微深入一点的,并举例说明1.显示环境变量HOME$echo$HOME/home/ljj2.设置一个新的变量$exportHELLO=”…

  • MediaType介绍

    MediaType介绍MediaType媒体类型:决定浏览器将以什么形式、什么编码对资源进行解析Content-Type:也属于MediaType媒体类型,主要用于在请求头中指定资源的MediaType一、MediaType类型类型描述text/htmlHTML格式text/plain纯文本格式text/xmlXML格式image/gifgif图片格式image/jpegjpg图片格式image/pngpng图片格式application/xhtml+xm

  • Code Coverage API plugin 一个新的代码覆盖率插件

    Code Coverage API plugin 一个新的代码覆盖率插件

  • Scala数组反转

    Scala数组反转objecterextendsApp{valst=Array[String](“A”,”B”,”C”)//数组反转valr=st.reverser.foreach(i=>{print(i)})}运算结果:注意:reverse是反转的关键字…

  • 超详细的springBoot学习笔记

    超详细的springBoot学习笔记SpringBoot1.SpringBoot简介Spring诞生时是Java企业版(JavaEnterpriseEdition,JEE,也称J2EE)的轻量级代替品。无需开发重量级的EnterpriseJavaBean(EJB),Spring为企业级Java开发提供了一种相…

    2022年10月21日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号