判断入射满射c语言编码,例4,判断下列函数是否是满射、单射、双射。.PDF

判断入射满射c语言编码,例4,判断下列函数是否是满射、单射、双射。.PDF例4,判断下列函数是否是满射、单射、双射。4,判断下列函数是否是满射、单射、双射。(1)f:N→Z,F(n)=小于n的完全平方数的个数f(n)={<0、0>,<1,1>,<2,2>,<3,2>,<4,2>,<5、2>}:f(48)=7f(49)=7f(50)=8,不是单射,48,49的像均是7,不…

大家好,又见面了,我是你们的朋友全栈君。

例4,判断下列函数是否是满射、单射、双射。

4,判断下列函数是否是满射、单射、双射。

(1)f:N→Z,F (n)=小于n 的完全平方数的个数

f(n)={<0、0>,<1,1>,<2,2>,<3,2>,<4,2>,<5、2> }

:f(48)=7 f(49)=7 f(50)=8,

不是单射,48,49 的像均是7,不是满射,因负数没有原像。

如f:N-N,则f 是满射。

(2)f:R→R,f(a)=2a+5

” y∈R 存在X=(Y-5)/2使得F(X)=Y,则F 是满射。

如” x1,x2∈R,X1≠X2,则2×1+5≠2×1+5,即f(x1)≠f(x2)

所以:f是单射 从而F(x)=是双射

(3)f:R→Z,f(a)=[a],[a]是取整函数,表示不大于a 的最大整数。

F 是满射,但不是单射,从而也不是双射。

(4)f:z+→R,f(n)=Lgn,z+为正整数集合。

f 不是单射也不是满射。

3、常用函数:

定义29:

(1)f是A 到B 的函数,存在一个b∈B,使的” a∈A,f(a)=b

(2)恒等关系,集合 A 上的恒等主要是 A →A 的函数, 即” a ∈

A,IA(a)=a,IA 是双射。

(3)单调递增函数和单调递减函数、f:R→R 的函数。

(4)特征函数:设A 为一个集合,B˝ A ,子集B 的特征。

函数X 是A→E=的映射,定义为: X =1,a∈B; X =0,a∈A-B

B B B

(5)自然映射:设R 是A 上的余角关系,g 是A 到A/R 上的映射,

即g(a)=[a]([a]是a 生成的等价类)称g 是A 到A/R 的自然映射。

:A={1,2,3,4},B={1,4},

则B 的特征函数, XB (1)=1, XB (2)=0,XB (3 )=0, XB (4)=1

:A={a,b,c},R={
,}∪IA,等价类[a]=[b]={a,b},

[c]={c},A/R={
{a,b},{c}},则g(a)=g(b)=[a],g (c)=[c]。

二、复合函数

定义30:函数f:A→B,g:B→C,则复合关系f●g 称为函数f 和g 的

1

复合函数

定理17:设函数f:A→B,g :B→C,则复合称f●g 是从A 到C 的函数,

而且” a∈A,(f●g)(a)=g(f(a))

证:因f 是函数,” a∈A 存在 一 b∈B,f(a)=b,因 g 是函数存在

一的 c 使得g(b)=c,∴g(f(a))。而根据复合关系,∈f●g,

由此可知” a ,存在 一c∈C,使得(f g)(a)=c,所以,f g 满足函

数条件且(f g)(a)=g(f(a))

5:使集合A={a,b,c},A 上的两个函数:

F={<1,3>,<2,1>,<3,3>}, g={<1,2>,<2,1>,<3,3>}

则f g={<1,3>,<2,2>,<3,1>},g f={<1,1>,<2,3>,<3,2>}

f f={<1,2>,<2,3>,<3,1>},f f f={<1,1>,<2,2>,<3,3>}=IA

6:R 上的三个函数,f(a)=3-a,g(a)=2a+a h(a)=a/3

则(f g)(a)=g(f(a))=g(3-a)=2(3-a)+1=7-2a

(g f)(a)=f(g(a))=f(2a+1)=2-2a((f g)h)(a)

=h((f g)(a))=h(g(f(a)))=h(7-2a)=(7-2a)/3

定理18:设函数F:A→B;g:B→C ;h:D→C,则 f (g h)=(f g) h

由复合关系运算的结合中主即可以到复合函数的结合律

定理19:设函数f:A→B ,g:B→C 则:

(1) 若f 和g 都是满射,则f g 也是满射;

(2) 若f 和g 都是单射,则f g 也是单射;

(3) 若f 和g 都是双射,则f g 也是双射。

证明: (1) ” Z∈C 因g 是满射,则存在y∈B ,使g(g)=z,因f 满射,对

于 y ∈B,存在 x ∈A,使得 f(x)=y, ∴g(f(x))=z 即(f g)(x)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/137510.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • vue动态生成表单_vue element 表单验证

    vue动态生成表单_vue element 表单验证前几天接了一个需求,需要动态生成一个表单数据,然后提交,提交完数据后。通过编辑按钮进入时,需要进行数据回填。没生成表单前的状态单机生成表单生成表单根据选择方式展示不同的表单元素如果从编辑页进入该页面有数据的话,进行数据回填样式同第三点相似,这里不再说明思路:请输入标题,请选择类型为父组件;请选择方式为子组件;根据请选择方式出来的内容为孙子组件难…

  • 守护线程是什么_守护线程什么时候结束

    守护线程是什么_守护线程什么时候结束守护线程是什么?Java线程分为用户线程和守护线程。守护线程是程序运行的时候在后台提供一种通用服务的线程。所有用户线程停止,进程会停掉所有守护线程,退出程序。Java中把线程设置为守护线程的方法:在start线程之前调用线程的setDaemon(true)方法。注意:setDaemon(true)必须在start()之前设置,否则会抛出IllegalThrea…

    2022年10月15日
  • SQL 分页查询 返回总条数

    SQL 分页查询 返回总条数分页查询返回总数SELECTSQL_CALC_FOUND_ROWS*FROMtbWHERExxxlimitM,N;SELECTFOUND_ROWS();

  • 微信小程序 轮播图 修改小点点「建议收藏」

    微信小程序 轮播图 修改小点点「建议收藏」.swiper-box.wx-swiper-dot{display:inline-flex;justify-content:space-between;border-radius:50%;}.swiper-box.wx-swiper-dot::before{content:”;flex-grow:1;backgrou

  • 一些入门的c#程序

    一些入门的c#程序

  • Ubuntu20.04修改root用户密码[通俗易懂]

    Ubuntu20.04修改root用户密码[通俗易懂]我们装完Ubuntu20.04之后,就需要设置下root用户的密码。先看看这张图,这是实际操作流程。具体操作如下:1.第一步:执行如下命令,设置密码sudopasswd2.第二步:输入当前用户的密码3.第三步:输入root用户的密码4.第四步:再次输入root用户的密码5.第五步:执行以下命令,切换到root用户suroot6.第六步:输入root用户的密码密码验证通过后就切换到了root用户了!…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号