函数极限的定义

函数极限的定义严格定义设函数y=f(x)y=f(x)y=f(x)在点x0x_0x0​的某个去心邻域内有定义,即存在ρ>0\rho>0ρ>0,使O(x0,ρ)\{x0}⊂Df\mathbf{O}(x_0,\rho)\backslash\{x_0\}\subsetD_fO(x0​,ρ)\{x0​}⊂Df​如果存在实数AAA,对于任意给定的ε>0\varepsilon>0ε>0,可以找到δ>0\delta>0δ>0,使得当0<∣x−x0∣

大家好,又见面了,我是你们的朋友全栈君。

严格定义

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某个去心邻域内有定义,即存在 ρ > 0 \rho>0 ρ>0,使

O ( x 0 , ρ ) \ { x 0 } ⊂ D f \mathbf{O} (x_0,\rho)\backslash\{x_0\}\subset D_f O(x0,ρ)\{
x0}
Df

如果存在实数 A A A,对于任意给定的 ε > 0 \varepsilon>0 ε>0 ,可以找到 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,成立

∣ f ( x ) − A ∣ < ε , |f(x)-A|<\varepsilon, f(x)A<ε,

则称 A A A 时函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的极限,记为

lim ⁡ x → x 0 f ( x ) = A , 或 , f ( x ) → A ( x → x 0 ) \lim_{x\to x_0}f(x)=A,\text{或},f(x)\to A(x\to x_0) xx0limf(x)=A,,f(x)A(xx0)

如果不存在具有上述性质的实数 A A A ,则称函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的极限不存在。

充分必要条件

函数 f ( x ) f(x) f(x) x 0 x_0 x0 极限存在的充分必要条件是 f ( x ) f(x) f(x) x 0 x_0 x0 的左极限与右极限存在且相等


2021年9月7日20:44:12

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/136896.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号