弗洛伊德算法—–最短路径算法(一)

弗洛伊德算法—–最短路径算法(一)学习此算法的原因:昨天下午遛弯的时候,碰到闺蜜正在看算法,突然问我会不会弗洛伊德算法?我就顺道答应,然后用了半个小时的时间,学习了此算法,并用5分钟讲解给她听,在此也分享给各位需要的朋友,让你们在最短的时间内,透彻的掌握该算法。RobertW.Floyd(罗伯特弗洛伊德)1962年在“CommunicationoftheACM”上发表了该算法,同年StephenWarsha…

大家好,又见面了,我是你们的朋友全栈君。

学习此算法的原因:昨天下午遛弯的时候,碰到闺蜜正在看算法,突然问我会不会弗洛伊德算法?我就顺道答应,然后用了半个小时的时间,学习了此算法,并用5分钟讲解给她听,在此也分享给各位需要的朋友,让你们在最短的时间内,透彻的掌握该算法。

 

Robert W. Floyd(罗伯特 弗洛伊德)1962年在“Communication of the ACM”上发表了该算法,同年Stephen Warshall(史蒂芬 沃舍尔)也独立发表该算法。弗洛伊德算法可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包。

 

既然说是求最短路径的算法,那么首先我们先来看一个例子。

弗洛伊德算法-----最短路径算法(一)

上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们需要求任意两个城市之间的最短路径,也就是求任意两个点之间的最短路径。这个问题也被称为“多源最短路径”问题。

 

现在我们用一个矩阵(4*4的二维数组e)对上图的信息进行存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己到自己的也是0,例如e[1][1]为0,具体如下。

弗洛伊德算法-----最短路径算法(一)

现在回到问题:如何用本文算法求任意两点之间最短路径呢?

我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路径变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2->b或者a->k1->k2->…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原来是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这个问题一般化。

当任意两点之间不允许经过第三个点时,这些城市之间最短路程就是初始路程,如下

弗洛伊德算法-----最短路径算法(一)

如现在只允许经过1号顶点,求任意两点之间的最短路程,应该 如何求呢?只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

弗洛伊德算法-----最短路径算法(一)

在只允许经过1号顶点的情况下,任意两点之间的最短路径更新为:

 

081029itl7z7m4l9qqg56d.png

通过上图我们发现:在只通过1号顶点中转的情况下,3号顶点到2号顶点(e[3][2])、4号顶点到2号顶点(e[4][2])以及4号顶点到3号顶点(e[4][3])的路程都变短了。

接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。如何做呢?我们需要在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

 
  1. //经过1号顶点   
  2. for(i=1;i<=n;i++)   
  3.     for(j=1;j<=n;j++)   
  4.  if (e[i][j] > e[i][1]+e[1][j])  e[i][j]=e[i][1]+e[1][j];   
  5. //经过2号顶点   
  6. for(i=1;i<=n;i++)   
  7.     for(j=1;j<=n;j++)   
  8.  if (e[i][j] > e[i][2]+e[2][j])  e[i][j]=e[i][2]+e[2][j]; 

在只允许经过1和2号顶点的情况下,任意两点之间的最短路程更新为:

081029e7gjlaaul4zk7z4n.png

通过上图得知,在相比只允许通过1号顶点进行中转的情况下,这里允许通过1和2号顶点进行中转,使得e[1][3]和e[4][3]的路程变得更短了。

同理,继续在只允许经过1、2和3号顶点进行中转的情况下,求任意两点之间的最短路程。任意两点之间的最短路程更新为:

081029pd747o8o87o07o7l.png

最后允许通过所有顶点作为中转,任意两点之间最终的最短路程为:

081030h7tmht7cs2h7qftu.png

整个算法过程虽然说起来很麻烦,但是代码实现却非常简单,核心代码只有五行:

 
  1. for(k=1;k<=n;k++)   
  2.     for(i=1;i<=n;i++)   
  3.  for(j=1;j<=n;j++)   
  4.      if(e[i][j]>e[i][k]+e[k][j])   
  5.    e[i][j]=e[i][k]+e[k][j]; 

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。用一句话概括就是:从i号顶点到j号顶点只经过前k号点的最短路程。其实这是一种“动态规划”的思想,关于这个思想我们将在《啊哈!算法2——伟大思维闪耀时》在做详细的讨论。下面给出这个算法的完整代码:

 
  1. #include <stdio.h>   
  2. int main()   
  3. {   
  4.     int e[10][10],k,i,j,n,m,t1,t2,t3;   
  5.     int inf=99999999; //用inf(infinity的缩写)存储一个我们认为的正无穷值   
  6.     //读入n和m,n表示顶点个数,m表示边的条数   
  7.     scanf(“%d %d”,&n,&m);   
  8.   
  9.     //初始化   
  10.     for(i=1;i<=n;i++)   
  11.  for(j=1;j<=n;j++)   
  12.      if(i==j) e[i][j]=0;   
  13. else e[i][j]=inf;   
  14.     //读入边   
  15.     for(i=1;i<=m;i++)   
  16.     {   
  17.  scanf(“%d %d %d”,&t1,&t2,&t3);   
  18.  e[t1][t2]=t3;   
  19.     }   
  20.   
  21.     //Floyd-Warshall算法核心语句   
  22.     for(k=1;k<=n;k++)   
  23.  for(i=1;i<=n;i++)   
  24.      for(j=1;j<=n;j++)   
  25.   if(e[i][j]>e[i][k]+e[k][j] )   
  26.       e[i][j]=e[i][k]+e[k][j];   
  27.   
  28.     //输出最终的结果   
  29.     for(i=1;i<=n;i++)   
  30.     {   
  31.      for(j=1;j<=n;j++)   
  32.  {   
  33.      printf(“%10d”,e[i][j]);   
  34.  }   
  35.  printf(“\n”);   
  36.     }   
  37.   
  38.     return 0;   

有一点需要注意的是:如何表示正无穷。我们通常将正无穷定义为99999999,因为这样即使两个正无穷相加,其和仍然不超过int类型的范围(C语言int类型可以存储的最大正整数是2147483647)。在实际应用中最好估计一下最短路径的上限,只需要设置比它大一点既可以。例如有100条边,每条边不超过100的话,只需将正无穷设置为10001即可。如果你认为正无穷和其它值相加得到一个大于正无穷的数是不被允许的话,我们只需在比较的时候加两个判断条件就可以了,请注意下面代码中带有下划线的语句。

 
  1. //Floyd-Warshall算法核心语句   
  2. for(k=1;k<=n;k++)   
  3.   for(i=1;i<=n;i++)   
  4.       for(j=1;j<=n;j++)   
  5.  if(e[i][k]<inf && e[k][j]<inf && e[i][j]>e[i][k]+e[k][j])   
  6.      e[i][j]=e[i][k]+e[k][j]; 

上面代码的输入数据样式为:

 
  1. 4 8   
  2. 1 2 2   
  3. 1 3 6   
  4. 1 4 4   
  5. 2 3 3   
  6. 3 1 7   
  7. 3 4 1   
  8. 4 1 5   
  9. 4 3 12 

第一行两个数为n和m,n表示顶点个数,m表示边的条数。

接下来m行,每一行有三个数t1、t2 和t3,表示顶点t1到顶点t2的路程是t3。

得到最终结果如下:

081030is22w3mmnz3r33m3.png

通过这种方法我们可以求出任意两个点之间最短路径。它的时间复杂度是O(N3)。令人很震撼的是它竟然只有五行代码,实现起来非常容易。正是因为它实现起来非常容易,如果时间复杂度要求不高,使用Floyd-Warshall来求指定两点之间的最短路或者指定一个点到其余各个顶点的最短路径也是可行的。当然也有更快的算法,请看下一节:Dijkstra算法。

另外需要注意的是:Floyd-Warshall算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。

081030elthvel6et6k886y.png

此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上。同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了这个算法。Robert W.Floyd这个牛人是朵奇葩,他原本在芝加哥大学读的文学,但是因为当时美国经济不太景气,找工作比较困难,无奈之下到西屋电气公司当了一名计算机操作员,在IBM650机房值夜班,并由此开始了他的计算机生涯。此外他还和J.W.J. Williams(威廉姆斯)于1964年共同发明了著名的堆排序算法HEAPSORT。堆排序算法我们将在第七章学习。Robert W.Floyd在1987年获得了图灵奖。

 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/136154.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • dumpbin的使用方法_dumpbin 的基础使用

    dumpbin的使用方法_dumpbin 的基础使用oneNeko于2020-10-17发布要查看exe依赖哪些动态库或某个DLL包含哪些接口函数依赖哪些动态库,可以使用depends工具或者vs自带的dumpbin工具,这里使用vs自带的dumpbin启动dumpbin是使用vs命令行的,有两种方法打开:1、打开vs,工具-命令行-开发者命令提示2、开始菜单-visualstdioxxxx-命令提示符使用使用很简单,语法如下:DUMPB…

  • CreateProcess和WinExec

    CreateProcess和WinExecCreateProcess非阻塞运行,而WinExec为阻塞运行,它非要等到返回时才继续执行。在两个进程共享同一个端口时,为了能让一个退出另一个申请,必须用函数CreateProcess,等到我的端口资源释放后,在运行另一个进程进行申请

  • SpringBootTest用法

    SpringBootTest用法SpringBootTest测试

  • oracle jdk 和 openjdk 切换使用

    oracle jdk 和 openjdk 切换使用

  • Pytest(6)重复运行用例pytest-repeat[通俗易懂]

    Pytest(6)重复运行用例pytest-repeat[通俗易懂]前言平常在做功能测试的时候,经常会遇到某个模块不稳定,偶然会出现一些bug,对于这种问题我们会针对此用例反复执行多次,最终复现出问题来。自动化运行用例时候,也会出现偶然的bug,可以针对单个用例,

  • 软件测试基础知识大全_软件测试主要学的内容有哪些

    软件测试基础知识大全_软件测试主要学的内容有哪些一、软件测试概述1、软件缺陷软件缺陷:又称之为“Bug”。即计算机软件或程序中存在的某种破坏正常运行能力的问题、错误,或者隐藏的功能缺陷。缺陷的表现形式:软件没有实现产品规格说明书所要求的功能模块;软件中出现了产品规格说明指明不应该出现的错误;软件实现了产品规格说明中没有提到的功能需求;软件没有实现虽然产品规格说明没有明确提及但应该实现的目标;软件难以理解、不易使用、运行缓慢、用户体验不友好;产生软件缺陷的原因:需求不清晰;系统结构较为复杂;对程序逻辑路径或者数据范围考虑不全面

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号