怎么进行大数据测试?我们需要具备怎样的测试能力?「建议收藏」

怎么进行大数据测试?我们需要具备怎样的测试能力?「建议收藏」前言:现在大数据这么火,那么作为测试人员,我们应该怎么进行大数据测试?需要具备怎样的测试能力?一、大数据测试实现被分成三个步骤(1):数据阶段验证大数据测试的第一步,也称作pre-hadoop阶段该过程包括如下验证:1、来自各方面的数据资源应该被验证,来确保正确的数据被加载进系统2、将源数据与推送到Hadoop系统中的数据进行比较,以确保它们匹配3、验证正确的数据被提取并被加载到HDFS正确的位置该阶段可以使用工具Talend或Datameer,进行数据阶段验证。(2):”MapReduc

大家好,又见面了,我是你们的朋友全栈君。

前言:现在大数据这么火,那么作为测试人员,我们应该怎么进行大数据测试?需要具备怎样的测试能力?

一、大数据测试实现被分成三个步骤

在这里插入图片描述

(1):数据阶段验证

大数据测试的第一步,也称作pre-hadoop阶段该过程包括如下验证:
1、来自各方面的数据资源应该被验证,来确保正确的数据被加载进系统
2、将源数据与推送到Hadoop系统中的数据进行比较,以确保它们匹配
3、验证正确的数据被提取并被加载到HDFS正确的位置
该阶段可以使用工具Talend或Datameer,进行数据阶段验证。

(2):”MapReduce”验证

大数据测试的第二步是MapReduce的验证。在这个阶段,测试者在每个节点上进行业务逻辑验证,然后在运行多个节点后验证它们,确保如下操作的正确性:
1、Map与Reduce进程正常工作
2、在数据上实施数据聚合或隔离规则
3、生成键值对
4、在执行Map和Reduce进程后验证数据

(3):输出阶段验证

大数据测试的最后或第三阶段是输出验证过程。生成输出数据文件,同时把文件移到一个EDW(Enterprise Data Warehouse:企业数据仓库)中或着把文件移动到任何其他基于需求的系统中。在第三阶段的活动包括:
1、检查转换(Transformation)规则被正确应用
2、检查数据完整性和成功的数据加载到目标系统中
3、通过将目标数据与HDFS文件系统数据进行比较来检查没有数据损坏

二、架构测试

Hadoop处理大量的数据,并且是非常耗费资源的。因此,架构测试对于确保您的大数据项目的成功至关重要。系统设计不当或设计不当可能导致性能下降,系统不能满足要求。至少,性能和故障转移测试服务应该在Hadoop环境中完成。

性能测试包括测试作业完成时间,内存使用率,数据吞吐量和类似的系统指标。而故障转移测试服务的动机是为了验证在数据节点发生故障的情况下数据处理是否无缝地发生

三、性能测试

大数据性能测试包括两个主要的行动
数据采集​​和整个过程:在这个阶段,测试人员验证快速系统如何消耗来自各种数据源的数据。测试涉及识别队列在给定时间框架内可以处理的不同消息。它还包括如何快速将数据插入到底层数据存储中,例如插入到Mongo和Cassandra数据库中。

数据处理:它涉及验证执行查询或映射缩减作业的速度。它还包括在底层数据存储填充到数据集中时独立测试数据处理。例如,在底层HDFS上运行Map Reduce作业

子组件性能:这些系统由多个组件组成,而且必须单独测试每个组件。例如,消息的索引和消费速度有多快,mapreduce作业,查询性能,搜索等

四、性能测试方法

大数据应用性能测试涉及大量结构化和非结构化数据的测试,并且需要特定的测试方法来测试这些海量数据。

五、性能测试按此顺序执行

在这里插入图片描述

1、过程从设置要测试性能的大数据群集开始
2、确定和设计相应的工作量
3、准备个人客户(自定义脚本创建)
4、执行测试并分析结果(如果不满足目标,则调整组件并重新执行)
5、最佳配置(性能测试的参数)

六、性能测试需要验证的各种参数

1、数据存储:数据如何存储在不同的节点中
2、提交日志:允许增长的提交日志有多大
3、并发性:有多少个线程可以执行写入和读取操作
4、缓存:调整缓存设置“行缓存”和“键缓存”。
5、超时:连接超时值,查询超时值等
6、JVM参数:堆大小,GC收集算法等
7、地图降低性能:排序,合并等
8、消息队列:消息速率,大小等

七、测试环境需求

测试环境需求取决于您正在测试的应用程序的类型。对于大数据测试,测试环境应该包含
1、它应该有足够的空间来存储和处理大量的数据
2、它应该有分布式节点和数据的集群
3、它应该有最低的CPU和内存利用率,以保持高性能

八、大数据测试面临的挑战

(1)、自动化

大数据的自动化测试需要具有技术专长的人员。另外,自动化工具不具备处理测试过程中出现的意外问题的能力

(2)、虚拟化

这是测试的一个不可缺少的阶段。虚拟机延迟会在实时大数据测试中造成计时问题。在大数据中管理图像也是一件麻烦事。

(3)、大数据集

1、需要验证更多的数据,并需要更快地完成
2、需要自动化测试工作
3、需要能够跨不同的平台进行测试

九、性能测试挑战

1、多种技术组合:每个子组件属于不同的技术,需要单独测试
2、不可用的特定工具:没有一个工具可以执行端到端的测试。例如,NoSQL可能不适合消息队列
3、测试脚本:需要高度的脚本来设计测试场景和测试用例
4、测试环境:数据量大,需要特殊的测试环境
5、监控解决方案:存在有限的解决方案,可以监控整个环境
6、诊断解决方案:需要定制解决方案来深入了解性能瓶颈区域

十、最后奉上微服务中台架构图和基于AI驱动的数据中台架构图

1、微服务中台架构图

在这里插入图片描述

2、基于AI驱动的数据中台架构图

在这里插入图片描述

十一、大数据资源汇总

相关大数据资源下载链接:资料下载
资源包含内容:

1、大数据测试方法

2、大数据测试工具

3、大数据测试质量

4、大数据测试总结

5、接口自动化框架设计思想

十二、疑问解答与加群学习交流

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/136096.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • getClassLoader能否为null

    getClassLoader能否为null前言我们Javaer都知道类想要被加载是需要一个个ClassLoader来执行的,并且类加载的方案叫双亲委派模式,说是双亲,其实就是单亲,可能我们最初的翻译人想让我们的加载器的家庭更完整吧,所以翻译成双亲。默认的类加载器包括BootstrapClassLoader、ExtClassLoader、AppClassLoader,他们都定义在在rt.jar中的sun….

  • Depix 这款去“马赛克“工具效果如何?

    Depix 这款去“马赛克“工具效果如何?最近突然冒出一则新闻,说出了一款开源去“马赛克“工具,三天获Github5000星,火爆网络!这款工具就是depix。出于好奇,去github下载了,文件很小,压缩包才580k,解压后也不到700k,里面的文件是python语言写的,主目录下就一个文件:depix.py,主目录下包含三个目录depixlib(库文件),docs(文档),images(需要用到的图片),如下图:根据depix在github上介绍,该文件目的根本不是去马赛克,而是做密码恢复使用,是对于手机或其他截屏上的类似马赛克

  • BetterIntelliJ 2021.4.4 激活码_通用破解码

    BetterIntelliJ 2021.4.4 激活码_通用破解码,https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • SICP 锻炼 (2.15)解决摘要:深入思考间隔误差

    SICP 锻炼 (2.15)解决摘要:深入思考间隔误差

  • 大屏数据可视化案例「建议收藏」

    大屏数据可视化案例「建议收藏」数据可视化:把相对复杂的、抽象的数据通过可视的、交互的方式进行展示,从而形象直观地表达数据蕴含的信息和规律。数据可视化是数据空间到图形空间的映射,是抽象数据的具象表达。数据可视化交互的基本原则:总览为先,缩放过滤按需查看细节。大屏数据可视化是当前可视化领域的一项热门应用,通常可以分为信息展示类、数据分析类及监控预警类。大屏数据可视化应用的难点并不在于图表类型的多样化,而在于如何能在…

  • ftp镜像下载

    ftp镜像下载

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号