约瑟夫环——公式法(递推公式)

约瑟夫环——公式法(递推公式)约瑟夫问题约瑟夫问题是个有名的问题:N个人围成一圈,第一个从1开始报数,报M的将被杀掉,下一个人接着从1开始报。如此反复,最后剩下一个,求最后的胜利者。例如只有三个个人,把他们叫做A、B、C围成一圈,从A开始报数,报2的人被杀掉。A开始报数,他报1。侥幸逃过一劫。然后轮到B报数,他报2。非常惨,他被杀了C接着从1开始报数然后轮到A报数,他报2。也被杀死了。最终胜利者是C解决方案普通解

大家好,又见面了,我是你们的朋友全栈君。

约瑟夫问题

约瑟夫问题是个著名的问题:N个人围成一圈,第一个人从1开始报数,报M的将被杀掉,下一个人接着从1开始报。如此反复,最后剩下一个,求最后的胜利者。
例如只有三个人,把他们叫做A、B、C,他们围成一圈,从A开始报数,假设报2的人被杀掉。

  • 首先A开始报数,他报1。侥幸逃过一劫。
  • 然后轮到B报数,他报2。非常惨,他被杀了
  • C接着从1开始报数
  • 接着轮到A报数,他报2。也被杀死了。
  • 最终胜利者是C

解决方案

普通解法

刚学数据结构的时候,我们可能用链表的方法去模拟这个过程,N个人看作是N个链表节点,节点1指向节点2,节点2指向节点3,……,节点N-1指向节点N,节点N指向节点1,这样就形成了一个环。然后从节点1开始1、2、3……往下报数,每报到M,就把那个节点从环上删除。下一个节点接着从1开始报数。最终链表仅剩一个节点。它就是最终的胜利者。
这里写图片描述

缺点:

要模拟整个游戏过程,时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。

公式法

约瑟夫环是一个经典的数学问题,我们不难发现这样的依次报数,似乎有规律可循。为了方便导出递推式,我们重新定义一下题目。
问题: N个人编号为1,2,……,N,依次报数,每报到M时,杀掉那个人,求最后胜利者的编号。

这边我们先把结论抛出了。之后带领大家一步一步的理解这个公式是什么来的。
递推公式:
f ( N , M ) = ( f ( N − 1 , M ) + M ) % N f(N,M)=(f(N-1,M)+M)\%N f(N,M)=(f(N1,M)+M)%N

  • f ( N , M ) f(N,M) f(N,M)表示,N个人报数,每报到M时杀掉那个人,最终胜利者的编号
  • f ( N − 1 , M ) f(N-1,M) f(N1,M)表示,N-1个人报数,每报到M时杀掉那个人,最终胜利者的编号

下面我们不用字母表示每一个人,而用数字。
1 、 2 、 3 、 4 、 5 、 6 、 7 、 8 、 9 、 10 、 11 1、 2 、 3、 4、5 、6、 7 、 8、 9、 10、 11 1234567891011
表示11个人,他们先排成一排,假设每报到3的人被杀掉。

  • 刚开始时,头一个人编号是1,从他开始报数,第一轮被杀掉的是编号3的人。
  • 编号4的人从1开始重新报数,这时候我们可以认为编号4这个人是队伍的头。第二轮被杀掉的是编号6的人。
  • 编号7的人开始重新报数,这时候我们可以认为编号7这个人是队伍的头。第三轮被杀掉的是编号9的人。
  • ……
  • 第九轮时,编号2的人开始重新报数,这时候我们可以认为编号2这个人是队伍的头。这轮被杀掉的是编号8的人。
  • 下一个人还是编号为2的人,他从1开始报数,不幸的是他在这轮被杀掉了。
  • 最后的胜利者是编号为7的人。

下图表示这一过程(先忽视绿色的一行)
这里写图片描述

现在再来看我们递推公式是怎么得到的!
将上面表格的每一行看成数组,这个公式描述的是:幸存者在这一轮的下标位置

  • f ( 1 , 3 ) f(1,3) f(1,3):只有1个人了,那个人就是获胜者,他的下标位置是0
  • f ( 2 , 3 ) = ( f ( 1 , 3 ) + 3 ) % 2 = 3 % 2 = 1 f(2,3)=(f(1,3)+3)\%2=3\%2=1 f(2,3)=(f(1,3)+3)%2=3%2=1:在有2个人的时候,胜利者的下标位置为1
  • f ( 3 , 3 ) = ( f ( 2 , 3 ) + 3 ) % 3 = 4 % 3 = 1 f(3,3)=(f(2,3)+3)\%3=4\%3=1 f(3,3)=(f(2,3)+3)%3=4%3=1:在有3个人的时候,胜利者的下标位置为1
  • f ( 4 , 3 ) = ( f ( 3 , 3 ) + 3 ) % 4 = 4 % 4 = 0 f(4,3)=(f(3,3)+3)\%4=4\%4=0 f(4,3)=(f(3,3)+3)%4=4%4=0:在有4个人的时候,胜利者的下标位置为0
  • ……
  • f ( 11 , 3 ) = 6 f(11,3)=6 f(11,3)=6

很神奇吧!现在你还怀疑这个公式的正确性吗?上面这个例子验证了这个递推公式的确可以计算出胜利者的下标,下面将讲解怎么推导这个公式。
问题1: 假设我们已经知道11个人时,胜利者的下标位置为6。那下一轮10个人时,胜利者的下标位置为多少?
答: 其实吧,第一轮删掉编号为3的人后,之后的人都往前面移动了3位,胜利这也往前移动了3位,所以他的下标位置由6变成3。

问题2: 假设我们已经知道10个人时,胜利者的下标位置为3。那下一轮11个人时,胜利者的下标位置为多少?
答: 这可以看错是上一个问题的逆过程,大家都往后移动3位,所以 f ( 11 , 3 ) = f ( 10 , 3 ) + 3 f(11,3)=f(10,3)+3 f(11,3)=f(10,3)+3。不过有可能数组会越界,所以最后模上当前人数的个数, f ( 11 , 3 ) = ( f ( 10 , 3 ) + 3 ) % 11 f(11,3)=(f(10,3)+3)\%11 f(11,3)=f(10,3)+3%11

问题3: 现在改为人数改为N,报到M时,把那个人杀掉,那么数组是怎么移动的?
答: 每杀掉一个人,下一个人成为头,相当于把数组向前移动M位。若已知N-1个人时,胜利者的下标位置位 f ( N − 1 , M ) f(N-1,M) f(N1,M),则N个人的时候,就是往后移动M为,(因为有可能数组越界,超过的部分会被接到头上,所以还要模N),既 f ( N , M ) = ( f ( N − 1 , M ) + M ) % n f(N,M)=(f(N-1,M)+M)\%n f(N,M)=(f(N1,M)+M)%n

**注:**理解这个递推式的核心在于关注胜利者的下标位置是怎么变的。每杀掉一个人,其实就是把这个数组向前移动了M位。然后逆过来,就可以得到这个递推式。

因为求出的结果是数组中的下标,最终的编号还要加1

下面给出代码实现:

int cir(int n,int m)
{
	int p=0;
	for(int i=2;i<=n;i++)
	{
		p=(p+m)%i;
	}
	return p+1;
}

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/135883.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(1)


相关推荐

  • eplanwin10激活码获取_在线激活

    (eplanwin10激活码获取)这是一篇idea技术相关文章,由全栈君为大家提供,主要知识点是关于2021JetBrains全家桶永久激活码的内容IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html1STL5S9V8F-eyJsaWN…

  • 【Shader】Shader官方示例[通俗易懂]

    官方示例原文地址:https://docs.unity3d.com/Manual/SL-SurfaceShaderExamples.htmlSurfaceShader示例在表面着色器。此页面上的示例显示如何使用内置照明模型。有关如何实现自定义光照模型的示例,请参阅SurfaceShader光照示例。简单着色器例我们将从一个非常简单的Shader开始,并在此基础上进行构建。这是一个将…

  • Java网络爬虫(七)–实现定时爬取与IP代理池

    Java网络爬虫(七)–实现定时爬取与IP代理池注:对代码及思路进行了改进—Java网络爬虫(十一)–重构定时爬取以及IP代理池(多线程+Redis+代码优化)定点爬取当我们需要对金融行业的股票信息进行爬取的时候,由于股票的价格是一直在变化的,我们不可能手动的去每天定时定点的运行程序,这个时候我们就需要实现定点爬取了,我们引入第三方库quartz的使用:packagetimeutils;importorg.quart

  • xgboost分类算法_python分类统计

    xgboost分类算法_python分类统计今天我们一起来学习一下如何用Python来实现XGBoost分类,这个是一个监督学习的过程,首先我们需要导入两个Python库:importxgboostasxgbfromsklearn.metricsimportaccuracy_score这里的accuracy_score是用来计算分类的正确率的。我们这个分类是通过蘑菇的若干属性来判断蘑菇是否有毒的分类,我们来看看数据…

  • linux中nmap命令,Linux中nmap命令起什么作用呢?

    linux中nmap命令,Linux中nmap命令起什么作用呢?摘要:下文讲述Linux中nmap的功能说明,如下所示;nmap是一个网络探测和安全审核的工具,它目前是开放源代码模式nmap命令功能:用于网络探测工具和安全和端口扫描器它可以快速扫描大型网络它运用原始的ip报文的方式发现网络上的主机nmap命令的语法格式:nmap[参数]—–常用参数说明——–traceroute:扫描主机端口并跟踪路由-p:扫描指定端口和端口范围-sP:对目标…

  • MySQL与PostgreSQL比较 哪个数据库更好

    MySQL与PostgreSQL比较 哪个数据库更好

    2021年10月29日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号