最短路径算法——Dijkstra算法——python3实现

最短路径算法——Dijkstra算法——python3实现本文参考来自数据结构与算法分析java语言描述。问题描述问题分析实现过程如何使用数据变化表问题描述现有一个有向赋权图。如下图所示:问题:根据每条边的权值,求出从起点s到其他每个顶点的最短路径和最短路径的长度。说明:不考虑权值为负的情况,否则会出现负值圈问题。s:起点v:算法当前分析处理的顶点w:与v邻接的顶点dvdvd_v:从s到v的距离…

大家好,又见面了,我是你们的朋友全栈君。

本文参考来自数据结构与算法分析 java语言描述

问题描述

现有一个有向赋权图。如下图所示:
这里写图片描述
问题:根据每条边的权值,求出从起点s到其他每个顶点的最短路径和最短路径的长度。
说明:不考虑权值为负的情况,否则会出现负值圈问题。
s:起点
v:算法当前分析处理的顶点
w:与v邻接的顶点
d v d_v dv:从s到v的距离
d w d_w dw:从s到w的距离
c v , w c_{v,w} cv,w:顶点v到顶点w的边的权值

问题分析

Dijkstra算法按阶段进行,同无权最短路径算法(先对距离为0的顶点处理,再对距离为1的顶点处理,以此类推)一样,都是先找距离最小的。
在每个阶段,Dijkstra算法选择一个顶点v,它在所有unknown顶点中具有最小的 d v d_v dv,同时算法声明从s到v的最短路径是known的。阶段的其余部分为,对w的 d v d_v dv(距离)和 p v p_v pv(上一个顶点)更新工作(当然也可能不更新)。
在算法的每个阶段,都是这样处理的:
【0.5】在无权的情况下,若 d w d_w dw= ∞ \infty 则置 d w = d v + 1 d_w=d_v+1 dw=dv+1(无权最短路径)
【1】在有权的情况下,若 d w d_w dw= ∞ \infty 则置 d w = d v + c v , w d_w=d_v+c_{v,w} dw=dv+cv,w
【2】若 d w d_w dw!= ∞ \infty ,开始分析:从顶点v到顶点w的路径,若能使得w的路径长比w原来的路径长短一点,那么就需要对w进行更新,否则不对w更新。即满足 d v + c v , w < d w d_v+c_{v,w}<d_w dv+cv,w<dw时,就需要把 d w d_w dw的值更新为 d v + c v , w d_v+c_{v,w} dv+cv,w,同时顶点w的 p v p_v pv值得改成顶点v

实现过程

考虑Dijkstra算法过程中,有一个数据变化表。
这里写图片描述
这里写图片描述
初始状态如上。开始顶点s是 v 1 v_1 v1,所有顶点都是unknown的。 v 1 v_1 v1 d v d_v dv的值为0,因为它是起点。

【1】选择unknown顶点中, d v d_v dv值最小的顶点,即顶点 v 1 v_1 v1。首先将 v 1 v_1 v1标记为known。对与 v 1 v_1 v1邻接的顶点 v 2 v 4 v_2 v_4 v2v4进行调整: v 2 v_2 v2的距离变为 d v + c v , w d_v+c_{v,w} dv+cv,w v 1 v_1 v1 d v d_v dv值+ c 1 , 2 c_{1,2} c1,2即0+2=2, v 2 v_2 v2 p v p_v pv值变为 v 1 v_1 v1;同理,对 v 4 v_4 v4作相应的处理。
这里写图片描述
【2】选择unknown顶点中, d v d_v dv值最小的顶点,即顶点 v 4 v_4 v4(其距离为1,最小)。将 v 4 v_4 v4标记为known。对其邻接的顶点 v 3 v 5 v 6 v 7 v_3 v_5 v_6 v_7 v3v5v6v7作相应的处理。
这里写图片描述
【3】选择unknown顶点中, d v d_v dv值最小的顶点,即顶点 v 2 v_2 v2(其距离为2,最小)。将 v 2 v_2 v2标记为known。对其邻接的顶点 v 4 v 5 v_4v_5 v4v5作相应的处理。但 v 4 v_4 v4是已知的,所以不需要调整;因为经过 v 2 v_2 v2 v 5 v_5 v5的距离为2+10=12,而s到 v 5 v_5 v5路径为3是已知的(上表中, v 5 v_5 v5 d v d_v dv为3),12>3,所以也不需要也没有必要调整。
这里写图片描述
【4】选择unknown顶点中, d v d_v dv值最小的顶点,即顶点 v 5 v_5 v5(距离为3,最小,其实还有 v 3 v_3 v3也是距离为3,但博主发现这里,先 v 5 v_5 v5 v 3 v_3 v3和先 v 3 v_3 v3 v 5 v_5 v5的运行结果都是一样的)。将 v 5 v_5 v5标记为known。对其邻接的顶点 v 7 v_7 v7作相应的处理。但原路径长更小,所以不用调整。
【5】再对 v 3 v_3 v3处理。对 v 6 v_6 v6的距离下调到3+5=8
这里写图片描述
【6】再对 v 7 v_7 v7处理。对 v 6 v_6 v6的距离下调到5+1=6
这里写图片描述
【7】最后,再对 v 6 v_6 v6处理。不需调整。
这里写图片描述
上述实现过程对应的算法,可能需要用到优先队列,每次出队 d v d_v dv值最小的顶点,因为如果只是遍历来找到 d v d_v dv值最小的顶点,可能会花费很多时间。

如何使用数据变化表

数据变化表的最终情况如下:
这里写图片描述
现在我们能找到起点 v 1 v_1 v1到任意的 v i v_i vi(除了起点)的最短路径,及其最短路径长。
比如,找到 v 1 v_1 v1 v 3 v_3 v3的最短路径。
【1】 v 3 v_3 v3 d v d_v dv值为3,所以最短路径长为3
【2】 v 3 v_3 v3 p v p_v pv值为 v 4 v_4 v4,所以 v 3 v_3 v3的上一个顶点为 v 4 v_4 v4
【3】到代表 v 4 v_4 v4的第四行,发现 v 4 v_4 v4 p v p_v pv值为 v 1 v_1 v1,所以 v 4 v_4 v4的上一个顶点为 v 1 v_1 v1
【4】 v 1 v_1 v1是起点,结束。 v 3 v_3 v3上一个是 v 4 v_4 v4 v 4 v_4 v4上一个是 v 1 v_1 v1,反过来就得到了最短路径 v 1 = > v 4 = > v 3 v_1=>v_4=>v_3 v1=>v4=>v3
上述分析,其实就是求最短路径的算法的思想:在对每个顶点对象进行处理后变成数据变化表的最终情况后,可以通过对任意顶点 v i v_i vi p v p_v pv值,回溯得到反转的最短路径。

代码实现

纸上得来终觉浅,绝知此事要躬行!使用python3来实现功能。
本文提到,将使用优先队列来实现寻找未知顶点中,具有最小dist的顶点。使用python已有实现好的优先队列。但实验中报错如下:
这里写图片描述
意思,Vertex实例并不支持小于比较运算符。所以需要实现Vertex类的__lt__方法。下面科普一下:

方法名 比较运算符 含义
__eq__ == equal
__lt__ < less than
__le__ <= less and equal
__gt__ > greater than
__ge__ >= greater and equal

但很遗憾,python库自带的优先队列from queue import PriorityQueue,并不满足本文的需求。当PriorityQueue的元素为对象时,需要该对象的class实现__lt__函数,在往优先队列里添加元素时,内部是用的堆排序,堆排序的特点为每个堆(以及每个子堆)的第一个元素总是那个最小的元素。关键在于,在建立了这个堆后,堆就已经记录下来了创建堆时各个元素的大小关系了,在创建优先队列后,再改变某个对象的值,这个堆的结构是肯定不会变的,所以这种堆排序造成了排序是一次性的,如果之后某个对象的属性发生变化,堆的结构也不会随之而改变。
或者说,我们想要的优先队列肯定不是系统提供的优先队列,因为我们要支持可变对象的成员修改导致堆的改变,解决方案有三种,1.内部使用的堆排序的堆,最起码要支持,删除任意节点和增加节点操作(因为这两步就可以达到修改的效果了)2.这个内部堆,在执行出队操作时,考察哪个节点有修改操作,再把堆改变到正确的形态,再出队3.维护一个list,进行排降序,然后每改变一个可变对象的值,就对这个对象进行冒泡或者二分查找找到位置(因为别的都是已经排好序的了,只有它不在正确的位置),最后再list.pop(),但第三个方案是我后来想到的,所以下面代码并不是这样实现的,读者可以进行尝试,肯定比每次遍历全部快。
应该说,可能用不上队列了。我们可能只需要一个list或者set来存储v,在出队前随便vi改变其dist,在出队时再遍历找到最小的dist的vi,再删除掉这个vi即可。因为vi的dist一直在变,需求特殊,但是没必要专门造个轮子(感觉这个轮子也不好造),虽然时间复杂度可能高了点,但代码简单了啊。

优先队列中的堆排序

失效代码如下:三个节点对象的dist都是无穷大,在三个对象都进入队列,再把v3的dist改成0,想要的效果是出队出v3,但出队出的是v1。原因如上:

from queue import PriorityQueue
class Vertex:
    #顶点类
    def __init__(self,vid,dist):
        self.vid = vid
        self.dist = dist
    
    def __lt__(self,other):
        return self.dist < other.dist   
v1=Vertex(1,float('inf'))
v2=Vertex(2,float('inf'))
v3=Vertex(3,float('inf'))

vlist = [v1,v2,v3]
q = PriorityQueue()

for i in range(0,len(vlist)):
    q.put(vlist[i])
v3.dist = 0

print('vid:',q.get().vid)#结果为vid: 1

而如果将在入队前,就把dist改变了,就能正确的出队。

v3.dist = 0
for i in range(0,len(vlist)):
    q.put(vlist[i])
#结果为vid: 3 

使用set代替优先队列

class Vertex:
    #顶点类
    def __init__(self,vid,outList):
        self.vid = vid#当前顶点id
        self.outList = outList#当前顶点的出边(有向边)指向的顶点的id的列表,也可以理解为邻接表
        self.know = False#默认为假
        self.dist = float('inf')#s到该点的距离,默认为无穷大
        self.prev = 0#上一个顶点的id,默认为0
    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.vid == other.vid
        else:
            return False
    def __hash__(self):
        return hash(self.vid)

#创建顶点对象
v1=Vertex(1,[2,4])
v2=Vertex(2,[4,5])
v3=Vertex(3,[1,6])
v4=Vertex(4,[3,5,6,7])
v5=Vertex(5,[7])
v6=Vertex(6,[])
v7=Vertex(7,[6])
#存储边的权值
edges = dict()
def add_edge(front,back,value):
    edges[(front,back)]=value
add_edge(1,2,2)
add_edge(1,4,1)
add_edge(3,1,4)
add_edge(4,3,2)
add_edge(2,4,3)
add_edge(2,5,10)
add_edge(4,5,2)
add_edge(3,6,5)
add_edge(4,6,8)
add_edge(4,7,4)
add_edge(7,6,1)
add_edge(5,7,6)
#创建一个长度为8的数组,来存储顶点,0索引元素不存
vlist = [False,v1,v2,v3,v4,v5,v6,v7]
#使用set代替优先队列,选择set主要是因为set有方便的remove方法
vset = set([v1,v2,v3,v4,v5,v6,v7])

def get_unknown_min():#此函数则代替优先队列的出队操作
    the_min = 0
    the_index = 0
    j = 0
    for i in range(1,len(vlist)):
        if(vlist[i].know is True):
            continue
        else:
            if(j==0):
                the_min = vlist[i].dist
                the_index = i
            else:
                if(vlist[i].dist < the_min):
                    the_min = vlist[i].dist
                    the_index = i                    
            j += 1
    #此时已经找到了未知的最小的元素是谁
    vset.remove(vlist[the_index])#相当于执行出队操作
    return vlist[the_index]

def main():
    #将v1设为顶点
    v1.dist = 0

    while(len(vset)!=0):
        v = get_unknown_min()
        print(v.vid,v.dist,v.outList)
        v.know = True
        for w in v.outList:#w为索引
            if(vlist[w].know is True):
                continue
            if(vlist[w].dist == float('inf')):
                vlist[w].dist = v.dist + edges[(v.vid,w)]
                vlist[w].prev = v.vid
            else:
                if((v.dist + edges[(v.vid,w)])<vlist[w].dist):
                    vlist[w].dist = v.dist + edges[(v.vid,w)]
                    vlist[w].prev = v.vid
                else:#原路径长更小,没有必要更新
                    pass
main()
print('v1.prev:',v1.prev,'v1.dist',v1.dist)
print('v2.prev:',v2.prev,'v2.dist',v2.dist)
print('v3.prev:',v3.prev,'v3.dist',v3.dist)
print('v4.prev:',v4.prev,'v4.dist',v4.dist)
print('v5.prev:',v5.prev,'v5.dist',v5.dist)
print('v6.prev:',v6.prev,'v6.dist',v6.dist)
print('v7.prev:',v7.prev,'v7.dist',v7.dist)

这里写图片描述
运行结果与数据变化表的最终情况一致。

得到最短路径

把以下代码和以上代码合起来就可以运行成功,使用递归的思想来做:

def real_get_traj(start,index):
    traj_list = []
    def get_traj(index):#参数是顶点在vlist中的索引
        if(index == start):#终点
            traj_list.append(index)
            print(traj_list[::-1])#反转list
            return
        if(vlist[index].dist == float('inf')):
            print('从起点到该顶点根本没有路径')
            return
        traj_list.append(index)
        get_traj(vlist[index].prev)
    get_traj(index)
    print('该最短路径的长度为',vlist[index].dist)

real_get_traj(1,3)
real_get_traj(1,6)

这里写图片描述
如图所示,从v1到v3的最短路径为:[1, 4, 3]
从v1到v6的最短路径为:[1, 4, 7, 6]

负权边

这里写图片描述
Dijkstra算法要求边上的权值不能为负数,不然就会出错。如上,本来最短路径是012,但由于算法是贪心的,所以只会直接选择到2

算法改进(若为无圈图)

注意,只有有向无圈图才有拓扑排序。

如果知道图是无圈图,那么我们可以通过改变声明顶点为known的顺序(原本这个顺序是,每次从unknown里面找出个最小dist的顶点),或者叫做顶点选取法则,来改进Dijkstra算法。新法则以拓扑排序选择顶点。由于选择和更新(每次选择和更新完成后,就会变成数据变化表中的某一种情况)可以在拓扑排序执行的时候进行,因此算法能一趟完成。

因为当一个顶点v被选取以后,按照拓扑排序的法则它肯定没有任何unknown顶点到v(指明方向)的入边,因为v的距离 d v d_v dv不可能再下降了(因为根本没有别的路到v了),所以这种选择方法是可行的。

使用这种方法不需要优先队列。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/135877.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • SVN——SVN项目迁移到GIT

    svn有很多优点,但是git的出现对svn的冲击的确很大,现在很多公司项目的都迁移的git上了,下面是我自己在做svn迁移项目到git上面时候整理的一些资料。暂时就些整理这些,具体的操作如果有看不懂的,可以和我联系!右侧的qq号,欢迎一起探讨。 相关操作: 1:命令行执行##clone svn -> git 地址支持协议 : svn://, http://, https://. 注意这个 UR

  • SAP License:实例讲解SAP与金税接口

    SAP License:实例讲解SAP与金税接口SAP与金税接口的问题很多人问我。今天我通过实例给大家讲解一下。步骤一:与金税公司取得联系,他们会给一个Word文档,里面描述金税系统的字段描述。步骤二:与金税公司签订合同,取得接口安装程序,现在有EXCEL接口和文本接口两种,建议购买EXcel接口,同时金税公司会提供U盘加密卡。步骤三:在SAP系统中做如下配置:销售和分销-基本功能-输出控制-输出确定-使用条件技术的输出确认-维护开票单据的输出确定-维护输出类型VV31双击行项目设置打印机(图片插入不进来)步骤四:Abap开发程序。

  • 我的世界显示服务器领地指令,我的世界领地指令介绍 我的世界领地指令怎么设置…

    我的世界显示服务器领地指令,我的世界领地指令介绍 我的世界领地指令怎么设置…在我的世界这款经典有趣的建造类游戏中,为了让自己的领地不然其他玩家占用,我们可以设置一下领地。那我的世界领地怎么设置呢?下面是小编给大家分享的我的世界领地指令大全,大家赶紧来了解一下吧!一、我的世界设置领地:先用一块木头斧子左键敲击一方块设置点A,右键敲击一方块设置点B(可以输入“/resselectsize”查看所选区域的大小);之后输入“/rescreate123”(例)这样设置后,就…

  • Android Q 将支持更安全的原生 3D 人脸识别功能「建议收藏」

    Android Q 将支持更安全的原生 3D 人脸识别功能「建议收藏」Android Q 将支持更安全的原生 3D 人脸识别功能

  • TinyXML用法小结[通俗易懂]

    TinyXML用法小结[通俗易懂]TinyXML用法小结1.     介绍Tinyxml的官方网址:http://www.grinninglizard.com官方介绍文档:http://www.grinninglizard.com/tinyxmldocs/tutorial0.html在TinyXML中,根据XML的各种元素来定义了一些类:TiXmlBase:整个TinyXML模型的基类。TiXmlAttr…

  • 我在滴滴数据分析岗实习8个月的收获(文末附内推机会)

    我在滴滴数据分析岗实习8个月的收获(文末附内推机会)作者:海潮来源:数据管道大家好,我是宝器!今天分享一下交流群里海潮兄弟的「数据分析岗」求职与工作经验,以下是海潮兄弟的自诉,全文共4825字,6图,阅读大概需要15分…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号