动态规划C++实现–最长递增子序列

动态规划C++实现–最长递增子序列题目:给定数组arr,返回arr的最长递增子序列。举例:arr=[2,1,5,3,6,4,8,9,7],返回的最长递增子序列为[1,3,4,8,9]要求:如果arr长度为N,请实现时间复杂度为O(NlogN)的方法。一、先介绍时间复杂度O(N^2)的方法,具体过程如下:1.生成长度为N的数组dp,dp[i]表示在以arr[i]这个数结尾的情况下,arr[0…

大家好,又见面了,我是你们的朋友全栈君。

题目: 给定数组arr, 返回arr的最长递增子序列

举例:arr = [2, 1, 5, 3, 6, 4, 8, 9, 7], 返回的最长递增子序列为 [1, 3, 4, 8, 9]

要求:如果arr长度为N,请实现时间复杂度为O(NlogN)的方法。

目录: 一、 时间复杂度O(N^2)的方法

           二、 时间复杂度O(NlogN)的方法

一、 先介绍时间复杂度O(N^2)的方法,具体过程如下:

1. 生成长度为N的数组dp, dp[i]表示在以arr[i]这个数结尾的情况下,arr[0…i]中的最大递增序列长度。

2. 对第一个数arr[0]来说,令dp[0] = 1,接下来,从左到右依次计算出每个数结尾的情况下的最长递增序列长度。

3. 计算dp[i],如果最长递增子序列以arr[i]结尾,那么arr[0,…,i-1]中所有比arr[i]小的数都可以作为倒数第二个数

    所以 dp[i] = max{ dp[j] + 1} (0 <=j < i, arr[j] < arr[i]), 如果arr[0,…,i-1]中所有数都不比arr[i]小,令dp[i] = 1。

4.根据求出的dp数组,得到最长递增子序列。遍历dp数组,找到最大值以及位置,并开始逆序还原出决策路径。

代码如下:

// 最长递增序列 <动态规划> <复杂度0(N^2)>
#include<bits/stdc++.h>
using namespace std;
vector<int> getdp1(vector<int> &arr);
vector<int> generateLIS(vector<int> &arr, vector<int>&dp);


int main() {
    vector<int> arr;
    int temp;
    while(cin >> temp){
        arr.push_back(temp);
    }
    vector<int> dp = getdp1(arr);
    vector<int> lis = generateLIS(arr, dp);
    for (int i = 0; i < lis.size(); i++){
        cout << lis[i]<<" ";
    }
    return 0;
}


vector<int> getdp1(vector<int> &arr){
    vector<int> dp(arr.size(), 0);
    for(int i = 0; i < arr.size(); i++){
        dp[i] = 1;
        for (int j = 0; j < i; j++){
            if (arr[j] < arr[i]){
                dp[i] = max(dp[j]+ 1, dp[i]);
            }
        }
    }
    return dp;
}


vector<int> generateLIS(vector<int> &arr, vector<int> &dp){
    int len = 0; int index = 0;
    for (int i = 0; i < dp.size(); i++) { //寻最长递增子序列末尾的位置和值
        if (dp[i] > len) {
            len = dp[i];              // 最长序列长度
            index = i;                // 最长序列末位置
        }
    }
    vector<int> lis(len, 0);
    lis[--len] = arr[index];
    for (int i = index; i >= 0; i--){
        if (arr[i] < arr[index] && dp[i] == dp[index] - 1){  //从后往前找子序列
            lis[--len] = arr[i];
            index = i;
        }
    }
    return lis;
}
/* input
2 1 5 3 6 4 8 9 7
*/
/* output
1 3 4 8 9
*/

编译器:codeblocks

输入:

动态规划C++实现--最长递增子序列

输出:

动态规划C++实现--最长递增子序列

二、 再介绍时间复杂度O(NlogN)的方法,具体过程如下:

计算dp数组的过程达到时间复杂度O(NlogN),这里采用二分查找进行优化,先生成一个长度为N的数组ends和变量right.

遍历的过程中ends[0,…,right]有效区,ends[right+1,…,N-1]无效区,

ends[b] = c 表示遍历到目前为止,在所有长度为b+1的递增序列中,最小的结尾数为c.

以arr=[2,1,5,3,6,4,8,9,7]为例进行说明:

1. 初始时,dp[0]=1, ends[0]=2, rights = 0, 有效区 ends[0…0],ends[0] = 2, 长度为1,结尾为2

2. arr[1] = 1, 在有效区ends[0,…0]找最左边大于或等于arr[1]的数,发现ends[0] =2 >arr[1], 表示以arr[1]结尾的最长序列只有

    一 个,dp[1] = 1, ends[0] = 1 (用1替换了原来的2)

3. arr[2] = 5, 在有效区ends[0,..0]找最左边大于或等于arr[2]的数,发现并没有,则ends的有效长度+1, end[1] = 5, 有效区

   扩大,dp[2] = 2. arr[0,1] = {1, 5}

依此类推:

代码如下:

// 最长递增序列 <动态规划> <复杂度0(NlogN)>
#include<bits/stdc++.h>
using namespace std;
vector<int> getdp2(vector<int> &arr);
vector<int> generateLIS(vector<int> &arr, vector<int>&dp);


int main() {
    vector<int> arr;
    int temp;
    while(cin >> temp){
        arr.push_back(temp);
    }
    vector<int> dp = getdp2(arr);
    vector<int> lis = generateLIS(arr, dp);
    for (int i = 0; i < lis.size(); i++){
        cout << lis[i]<<" ";
    }
    return 0;
}


vector<int> getdp2(vector<int> &arr){
    vector<int> dp(arr.size(), 0);
    vector<int> ends(arr.size(), 0);
    ends[0] = arr[0]; dp[0] = 1;
    int right = 0; int l = 0; int r = 0; int m = 0;
    for (int i = 1; i < arr.size(); i++) {
        l = 0;
        r = right;
        while(l <= r) {      //二分法
            m = (l + r) / 2;
            if (arr[i] > ends[m]){
                l = m + 1;
            }else {
                r = m - 1;
            }
        }
        right = max(right, l);
        ends[l] = arr[i];
        dp[i] = l + 1;
    }
    return dp;
}


vector<int> generateLIS(vector<int> &arr, vector<int> &dp){
    int len = 0; int index = 0;
    for (int i = 0; i < dp.size(); i++) { //寻最长递增子序列末尾的位置和值
        if (dp[i] > len) {
            len = dp[i];
            index = i;
        }
    }
    vector<int> lis(len, 0);
    lis[--len] = arr[index];
    for (int i = index; i >= 0; i--){
        if (arr[i] < arr[index] && dp[i] == dp[index] - 1){  //从后往前找子序列
            lis[--len] = arr[i];
            index = i;
        }
    }
    return lis;
}
/* input
2 1 5 3 6 4 8 9 7
*/
/* output
1 3 4 8 9
*/

编译器:codeblocks

输入:

动态规划C++实现--最长递增子序列

输出:

动态规划C++实现--最长递增子序列

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/134209.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号