BM3D图像去噪算法原理及代码详解

BM3D图像去噪算法原理及代码详解1.BM3D算法简介BM3D是2007年TIP的文章,题目是Imagedenoisingbysparse3Dtransform-domaincollaborativeltering,论文、项目的地址是http://www.cs.tut.fi/~foi/GCF-BM3D/,提供matlab代码。处理灰度图的BM3D以及它的变体CBM3D(彩色图)、VBM3D(时域)是图像去噪…

大家好,又见面了,我是你们的朋友全栈君。

BM3D图像去噪算法原理及代码详解

1. BM3D 算法简介

BM3D是2007年TIP的文章,题目是Image denoising by sparse 3D transform-domain collaborative ltering,论文、项目的地址是http://www.cs.tut.fi/~foi/GCF-BM3D/,提供matlab代码。
处理灰度图的BM3D以及它的变体CBM3D(彩色图)、VBM3D(时域)是图像去噪领域公认的去噪效果(PSNR)最好的,而BM4D、VBM4D等也都是沿袭BM3D的基于块处理(block-wise estimate)的思想,但其计算时间复杂度极大,或许只能用于离线处理(offline),当然后续有文章进行优化(代码、算法),这里就不再提及。

2. 算法流程介绍

算法总体流程如图:
在这里插入图片描述
主要分为以下两大步:

第一步,基础估计:

1、对于每个目标图块,在附近寻找最多MAXN1(超参数)个相似的图块,为了避免噪点的影响,将图块经过2D变换(代码中使用DCT变换)后再用欧氏距离衡量相似程度。按距离从小到大排序后取最多前MAXN1个。叠成一个三维数组。
在这里插入图片描述
2、对3D数组的第三维,即图块叠起来后,每个图块同一个位置的像素点构成的数组,进行DCT变换后,采用硬阈值的方式将小于超参数 [公式] 的成分置为0。同时统计非零成分的数量作为后续权重的参考。后将第三维进行逆变换。
在这里插入图片描述
为什么要这么做?
传统方法,如NLM,由空域得到近似块,然后对近似块的每个像素一一对应去平均,作为目标块每个像素的值。但是,上述策略对于如下场景并不合适:

  • i. 某些相似块拥有的噪声更小,相比其它相似块,该块的“权重”应更大,而不是简单取平均
  • ii. 相似块图像信息冗余,从空域上看,两个有重叠区域的相似块,简单平均会造成目标块信息重复。

因此采用“Collaborative ltering by shrinkage in transform domain”的方式,能够加强相似块的稀疏性,同时降低相似块的噪声。
在这里插入图片描述

3、将这些图块逆变换后放回原位,利用非零成分数量统计叠加权重,最后将叠放后的图除以每个点的权重就得到基础估计的图像,此时图像的噪点得到了较大的去除。
在这里插入图片描述
第二步,最终估计:

1、由于基础估计极大地消除了噪点,对于含噪原图的每个目标图块,可以直接用对应基础估计图块的欧氏距离衡量相似程度。按距离从小到大排序后取最多前MAXN1个。将基础估计图块、含噪原图图块分别叠成两个三维数组。
在这里插入图片描述
2、对含基础估计3D数组的第三维,即图块叠起来后,每个图块同一个位置的像素点构成的数组,进行DCT变换,利用如下公式得到系数。
在这里插入图片描述
3、将系数与含噪3D图块相乘放回原处,最后做加权平均调整即可得到最终估计图。相对于基础估计图,还原了更多原图的细节。
在这里插入图片描述

3. 加速

在实际操作中,为加快BM3D的计算速度,在寻找相似块的步骤后,得到的块实际上已经进行了2D变换处理,然后再加上一个1D变换(文中使用1D-Haar离散小波变换),成为3D变换,使用2D+1D的变换方法替代直接3D变换。

4. 难点

文中提到的2D变换与各种超参数,并没有一个确定值,对于真实视频去噪,使用的2D变换与超参数可能与文章实验设置不同,因此需要进行微调,也就是需要大量实验的积累。

最终的去噪结果如下图所示,可以发现,噪声被很好地去除了,图像边缘保留完整,图像纹理得到了很好的还原。
在这里插入图片描述
但这些都是自行添加高斯白噪声产生的测试图像,若实际运用在图像降噪中,原始图像不会有这么多噪声,因此就不需要BM3D两步去噪。那么可以将BM3D的两步拆开,采用前步的硬阈值、2D变换寻找相似块、1D变换升至3D域再加权平均,或后步直接使用维纳滤波,或许就已经有很好的效果了。

4. C-BM3D

针对彩色图,本文将图像的RGB色彩空间转换为YUV色彩空间,因为YUV的Y分量拥有较其余分量更多的图像信息(边缘、材质、纹理等),并且拥有更高的SNR(信噪比),而U、V分量拥有更多的低频信息。
因此对于C-BM3D,本文使用Y分量搜寻相似块,U、V分量使用Y分量的相似块位置信息。
在这里插入图片描述
可以仿照他转换色彩空间、从Y分量搜索相似块的方法,来对彩色图像进行降噪处理。

5. VBM3D

对于视频去噪,一是可以将视频转化为单帧图像,然后使用图像去噪算法对单帧进行处理,然后融合还原成已去噪的视频;二是根据视频前后帧信息,某个像素点,前帧没有噪声,或噪声较少,那么就可以作为后帧的值,但视频中物体是运动的,如果按前后帧的同一位置的像素处理是不合理的,因此会引入运动补偿、跟踪的算法,对于实时处理来说,条件就有点苛刻。

VBM3D不含运动补偿,对中间帧的目标块搜索相似块,搜索对象是前后帧与中间帧,提出了predictive-search block-matching(PS-BM),用于前后帧的相似块搜索。具体而言,PS-BM,先以中间帧的目标块为中心、搜索半径NS的区域寻找相似块,然后在该块对应的前后帧的位置为中心、搜索半径NPR的区域寻找相似块,中间帧、前后帧的相似块构成块集合。其余步骤与BM3D无异。
在这里插入图片描述

6. 代码实现

# -*- coding: utf-8 -*-
""" *BM3D算法简单实现,主要程序部分 """
import cv2
import numpy
import math
import numpy.matlib

cv2.setUseOptimized(True)

# Parameters initialization
sigma = 25
Threshold_Hard3D = 2.7 * sigma  # Threshold for Hard Thresholding

Step1_Blk_Size = 4  # block_Size即块的大小
Step1_Blk_Step = 1  # Rather than sliding by one pixel to every next reference block, use a step of Nstep pixels in both horizontal and vertical directions.
Step1_Search_Step = 1  # 块的搜索step
First_Match_threshold = 125 * Step1_Blk_Size ** 2  # 用于计算block之间相似度的阈值
Step1_max_matched_cnt = 16  # 组最大匹配的块数
Step1_Search_Window = 15  # Search for candidate matching blocks in a local neighborhood of restricted size NS*NS centered

Step2_Blk_Size = 4
Step2_Blk_Step = 1
Step2_Search_Step = 1
Second_Match_threshold = 220. / 16 * Step2_Blk_Size ** 2  # 用于计算block之间相似度的阈值
Step2_max_matched_cnt = 32
Step2_Search_Window = 25

Beta_Kaiser = 1.5


def init(img, _blk_size, _Beta_Kaiser):
    """该函数用于初始化,返回用于记录过滤后图像以及权重的数组,还有构造凯撒窗"""
    m_shape = img.shape
    m_img = numpy.matrix(numpy.zeros(m_shape, dtype=float))
    m_wight = numpy.matrix(numpy.zeros(m_shape, dtype=float))

    # 窗函数(window function)是一种除在给定区间之外取值均为0的实函数
    K = numpy.matrix(numpy.kaiser(_blk_size, _Beta_Kaiser))
    m_Kaiser = numpy.array(K.T * K)  # 构造一个凯撒窗
    # 窗函数:https://zh.wikipedia.org/wiki/窗函数#Kaiser窗

    # print m_Kaiser, type(m_Kaiser), m_Kaiser.shape
    # cv2.imshow("Kaisser", m_Kaiser)
    # cv2.waitKey(0)
    # cv2.imwrite("Kaisser.jpg", m_Kaiser.astype(numpy.uint8))
    return m_img, m_wight, m_Kaiser


def Locate_blk(i, j, blk_step, block_Size, width, height):
    '''该函数用于保证当前的blk不超出图像范围'''
    if i * blk_step + block_Size < width:
        point_x = i * blk_step
    else:
        point_x = width - block_Size

    if j * blk_step + block_Size < height:
        point_y = j * blk_step
    else:
        point_y = height - block_Size

    m_blockPoint = numpy.array((point_x, point_y), dtype=int)  # 当前参考图像的顶点

    return m_blockPoint


def Define_SearchWindow(_noisyImg, _BlockPoint, _WindowSize, Blk_Size):
    """ 该函数利用block的左上顶点的位置返回一个二元组(x,y) 用以界定_Search_Window左上角顶点坐标 """
    point_x = _BlockPoint[0]  # 当前坐标
    point_y = _BlockPoint[1]  # 当前坐标

    # 获得SearchWindow四个顶点的坐标
    LX = point_x + Blk_Size / 2 - _WindowSize / 2  # 左上x
    LY = point_y + Blk_Size / 2 - _WindowSize / 2  # 左上y
    RX = LX + _WindowSize  # 右下x
    RY = LY + _WindowSize  # 右下y

    # 判断一下是否越界
    if LX < 0:
        LX = 0
    elif RX > _noisyImg.shape[0]:
        LX = _noisyImg.shape[0] - _WindowSize
    if LY < 0:
        LY = 0
    elif RY > _noisyImg.shape[0]:
        LY = _noisyImg.shape[0] - _WindowSize

    return numpy.array((LX, LY), dtype=int)


def Step1_fast_match(_noisyImg, _BlockPoint):
    """快速匹配"""
    ''' *返回邻域内寻找和当前_block相似度最高的几个block,返回的数组中包含本身 *_noisyImg:噪声图像 *_BlockPoint:当前block的坐标及大小 '''
    (present_x, present_y) = _BlockPoint  # 当前坐标
    Blk_Size = Step1_Blk_Size
    Search_Step = Step1_Search_Step
    Threshold = First_Match_threshold
    max_matched = Step1_max_matched_cnt
    Window_size = Step1_Search_Window

    blk_positions = numpy.zeros((max_matched, 2), dtype=int)  # 用于记录相似blk的位置
    Final_similar_blocks = numpy.zeros((max_matched, Blk_Size, Blk_Size), dtype=float)  # 用于保存最后结果

    img = _noisyImg[present_x: present_x + Blk_Size, present_y: present_y + Blk_Size]
    dct_img = cv2.dct(img.astype(numpy.float64))  # 对目标作block作二维余弦变换

    Final_similar_blocks[0, :, :] = dct_img  # 保存变换后的目标块
    blk_positions[0, :] = _BlockPoint

    Window_location = Define_SearchWindow(_noisyImg, _BlockPoint, Window_size, Blk_Size)
    blk_num = (Window_size - Blk_Size) / Search_Step  # 确定最多可以找到多少相似blk
    blk_num = int(blk_num)
    (present_x, present_y) = Window_location

    similar_blocks = numpy.zeros((blk_num ** 2, Blk_Size, Blk_Size), dtype=float)
    m_Blkpositions = numpy.zeros((blk_num ** 2, 2), dtype=int)
    Distances = numpy.zeros(blk_num ** 2, dtype=float)  # 记录各个blk与它的相似度

    # 开始在_Search_Window中搜索,初始版本先采用遍历搜索策略,这里返回最相似的几块
    matched_cnt = 0
    for i in range(blk_num):
        for j in range(blk_num):
            tem_img = _noisyImg[present_x: present_x + Blk_Size, present_y: present_y + Blk_Size]
            dct_Tem_img = cv2.dct(tem_img.astype(numpy.float64))
            # 先对块进行dct变换再求l2-norm,寻找相似块,降低噪点的干扰
            m_Distance = numpy.linalg.norm((dct_img - dct_Tem_img)) ** 2 / (Blk_Size ** 2)

            # 下面记录数据自动不考虑自身(因为已经记录)
            if m_Distance < Threshold and m_Distance > 0:  # 说明找到了一块符合要求的
                similar_blocks[matched_cnt, :, :] = dct_Tem_img
                m_Blkpositions[matched_cnt, :] = (present_x, present_y)
                Distances[matched_cnt] = m_Distance
                matched_cnt += 1
            present_y += Search_Step
        present_x += Search_Step
        present_y = Window_location[1]  # 搜索窗的行
    # 取前matched_cnt个块
    Distances = Distances[:matched_cnt]
    # 对distance进行排序,找到对应顺序的序号
    # numpy.argsort() 的用法:
    # https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
    Sort = Distances.argsort()

    # 统计一下找到了多少相似的blk
    if matched_cnt < max_matched:
        Count = matched_cnt + 1
    else:
        Count = max_matched
    # 将前matched_cnt个块放入Final_similar_blocks,左上坐标信息保存在lk_positions
    if Count > 0:
        for i in range(1, Count):
            Final_similar_blocks[i, :, :] = similar_blocks[Sort[i - 1], :, :]
            blk_positions[i, :] = m_Blkpositions[Sort[i - 1], :]
    return Final_similar_blocks, blk_positions, Count


def Step1_3DFiltering(_similar_blocks):
    ''' *3D变换及滤波处理 *_similar_blocks:相似的一组block,这里已经是频域的表示 *要将_similar_blocks第三维依次取出,然在频域用阈值滤波之后,再作反变换 '''

    statis_nonzero = 0  # 非零元素个数
    m_Shape = _similar_blocks.shape

    # 下面这一段代码很耗时
    for i in range(m_Shape[1]):
        for j in range(m_Shape[2]):
            # print _similar_blocks[:, i, j], type(_similar_blocks[:, i, j])
            tem_Vct_Trans = cv2.dct(_similar_blocks[:, i, j])
            # 硬阈值变换,去掉较小的频率成分
            tem_Vct_Trans[numpy.abs(tem_Vct_Trans[:]) < Threshold_Hard3D] = 0.
            statis_nonzero += tem_Vct_Trans.nonzero()[0].size
            _similar_blocks[:, i, j] = cv2.idct(tem_Vct_Trans)[0]
    return _similar_blocks, statis_nonzero


def Aggregation_hardthreshold(_similar_blocks, blk_positions, m_basic_img, m_wight_img, _nonzero_num, Count, Kaiser):
    ''' *对3D变换及滤波后输出的stack进行加权累加,得到初步滤波的图片 *_similar_blocks:相似的一组block,这里是频域的表示 *对这些块,用非零项的权重乘以凯撒窗之后再分别放回原位 '''
    _shape = _similar_blocks.shape
    if _nonzero_num < 1:
        _nonzero_num = 1
    block_wight = (1. / (sigma ** 2 * _nonzero_num)) * Kaiser
    for i in range(Count):
        point = blk_positions[i, :]
        tem_img = block_wight * cv2.idct(_similar_blocks[i, :, :])
        m_basic_img[point[0]:point[0] + _shape[1], point[1]:point[1] + _shape[2]] += tem_img
        m_wight_img[point[0]:point[0] + _shape[1], point[1]:point[1] + _shape[2]] += block_wight


def BM3D_1st_step(_noisyImg):
    """第一步,基本去噪"""
    # 初始化一些参数:
    (width, height) = _noisyImg.shape  # width = row, height = col
    block_Size = Step1_Blk_Size  # 块大小
    blk_step = Step1_Blk_Step  # N块步长滑动
    # 根据步长确定搜索的次数
    Width_num = (width - block_Size) / blk_step
    Height_num = (height - block_Size) / blk_step

    # 初始化几个数组
    # 空图像、空权重表、凯撒窗
    Basic_img, m_Wight, m_Kaiser = init(_noisyImg, Step1_Blk_Size, Beta_Kaiser)

    # 开始逐block的处理,+2是为了避免边缘上不够
    for i in range(int(Width_num + 2)):
        for j in range(int(Height_num + 2)):
            # m_blockPoint当前参考图像的左上角顶点
            m_blockPoint = Locate_blk(i, j, blk_step, block_Size, width, height)  # 该函数用于保证当前的blk不超出图像范围
            Similar_Blks, Positions, Count = Step1_fast_match(_noisyImg, m_blockPoint)  # 相似块集合、相似块位置、相似块数量
            Similar_Blks, statis_nonzero = Step1_3DFiltering(Similar_Blks)  # 协同过滤后的相似块集合、非零项数量
            Aggregation_hardthreshold(Similar_Blks, Positions, Basic_img, m_Wight, statis_nonzero, Count, m_Kaiser)
    Basic_img[:, :] /= m_Wight[:, :]
    basic = numpy.matrix(Basic_img, dtype=int)
    basic.astype(numpy.uint8)

    return basic


def Step2_fast_match(_Basic_img, _noisyImg, _BlockPoint):
    ''' *快速匹配算法,返回邻域内寻找和当前_block相似度最高的几个block,要同时返回basicImg和IMG *_Basic_img: 基础去噪之后的图像 *_noisyImg:噪声图像 *_BlockPoint:当前block的坐标及大小 '''
    (present_x, present_y) = _BlockPoint  # 当前坐标
    Blk_Size = Step2_Blk_Size
    Threshold = Second_Match_threshold
    Search_Step = Step2_Search_Step
    max_matched = Step2_max_matched_cnt
    Window_size = Step2_Search_Window

    blk_positions = numpy.zeros((max_matched, 2), dtype=int)  # 用于记录相似blk的位置
    Final_similar_blocks = numpy.zeros((max_matched, Blk_Size, Blk_Size), dtype=float)
    Final_noisy_blocks = numpy.zeros((max_matched, Blk_Size, Blk_Size), dtype=float)

    img = _Basic_img[present_x: present_x + Blk_Size, present_y: present_y + Blk_Size]
    dct_img = cv2.dct(img.astype(numpy.float32))  # 对目标作block作二维余弦变换
    Final_similar_blocks[0, :, :] = dct_img

    n_img = _noisyImg[present_x: present_x + Blk_Size, present_y: present_y + Blk_Size]
    dct_n_img = cv2.dct(n_img.astype(numpy.float32))  # 对目标作block作二维余弦变换
    Final_noisy_blocks[0, :, :] = dct_n_img

    blk_positions[0, :] = _BlockPoint

    Window_location = Define_SearchWindow(_noisyImg, _BlockPoint, Window_size, Blk_Size)
    blk_num = (Window_size - Blk_Size) / Search_Step  # 确定最多可以找到多少相似blk
    blk_num = int(blk_num)
    (present_x, present_y) = Window_location

    similar_blocks = numpy.zeros((blk_num ** 2, Blk_Size, Blk_Size), dtype=float)
    m_Blkpositions = numpy.zeros((blk_num ** 2, 2), dtype=int)
    Distances = numpy.zeros(blk_num ** 2, dtype=float)  # 记录各个blk与它的相似度

    # 开始在_Search_Window中搜索,初始版本先采用遍历搜索策略,这里返回最相似的几块
    matched_cnt = 0
    for i in range(blk_num):
        for j in range(blk_num):
            tem_img = _Basic_img[present_x: present_x + Blk_Size, present_y: present_y + Blk_Size]
            # dct_Tem_img = cv2.dct(tem_img.astype(numpy.float32))
            # m_Distance = numpy.linalg.norm((dct_img - dct_Tem_img)) ** 2 / (Blk_Size ** 2)

            m_Distance = numpy.linalg.norm((img - tem_img)) ** 2 / (Blk_Size ** 2)
            # 下面记录数据自动不考虑自身(因为已经记录)
            if m_Distance < Threshold and m_Distance > 0:
                dct_Tem_img = cv2.dct(tem_img.astype(numpy.float32))
                similar_blocks[matched_cnt, :, :] = dct_Tem_img
                m_Blkpositions[matched_cnt, :] = (present_x, present_y)
                Distances[matched_cnt] = m_Distance
                matched_cnt += 1
            present_y += Search_Step
        present_x += Search_Step
        present_y = Window_location[1]
    Distances = Distances[:matched_cnt]
    Sort = Distances.argsort()

    # 统计一下找到了多少相似的blk
    if matched_cnt < max_matched:
        Count = matched_cnt + 1
    else:
        Count = max_matched

    # nosiy图像的3D Stack,利用第一步的Basic估计结果来构造
    if Count > 0:
        for i in range(1, Count):
            Final_similar_blocks[i, :, :] = similar_blocks[Sort[i - 1], :, :]
            blk_positions[i, :] = m_Blkpositions[Sort[i - 1], :]

            (present_x, present_y) = m_Blkpositions[Sort[i - 1], :]
            n_img = _noisyImg[present_x: present_x + Blk_Size, present_y: present_y + Blk_Size]
            Final_noisy_blocks[i, :, :] = cv2.dct(n_img.astype(numpy.float64))

    return Final_similar_blocks, Final_noisy_blocks, blk_positions, Count


def Step2_3DFiltering(_Similar_Bscs, _Similar_Imgs):
    ''' *3D维纳变换的协同滤波 *_similar_blocks:相似的一组block,这里是频域的表示 *要将_similar_blocks第三维依次取出,然后作dct,在频域进行维纳滤波之后,再作反变换 *返回的Wiener_wight用于后面Aggregation '''
    m_Shape = _Similar_Bscs.shape
    Wiener_wight = numpy.zeros((m_Shape[1], m_Shape[2]), dtype=float)

    for i in range(m_Shape[1]):
        for j in range(m_Shape[2]):
            tem_vector = _Similar_Bscs[:, i, j]
            tem_Vct_Trans = numpy.matrix(cv2.dct(tem_vector))

            Norm_2 = numpy.float64(tem_Vct_Trans.T * tem_Vct_Trans)
            m_weight = Norm_2 / (Norm_2 + sigma ** 2)
            Wiener_wight[i, j] = m_weight

            #if m_weight != 0: Wiener_wight[i, j] = 1. / (m_weight ** 2 * sigma ** 2)
            # else:
            # Wiener_wight[i, j] = 10000

            # RES=IDCT(WEIGHT(DCT(NOISE_BLOCK)))
            tem_vector = _Similar_Imgs[:, i, j]
            tem_Vct_Trans = m_weight * cv2.dct(tem_vector)
            _Similar_Bscs[:, i, j] = cv2.idct(tem_Vct_Trans)[0]

    return _Similar_Bscs, Wiener_wight


def Aggregation_Wiener(_Similar_Blks, _Wiener_wight, blk_positions, m_basic_img, m_wight_img, Count, Kaiser):
    ''' *对3D变换及滤波后输出的stack进行加权累加,得到初步滤波的图片 *_similar_blocks:相似的一组block,这里是频域的表示 *对于最后的块,乘以凯撒窗之后再输出 '''
    _shape = _Similar_Blks.shape
    block_wight = _Wiener_wight * Kaiser

    for i in range(Count):
        point = blk_positions[i, :]
        tem_img = _Wiener_wight * cv2.idct(_Similar_Blks[i, :, :]) * Kaiser
        m_basic_img[point[0]:point[0] + _shape[1], point[1]:point[1] + _shape[2]] += tem_img
        m_wight_img[point[0]:point[0] + _shape[1], point[1]:point[1] + _shape[2]] += block_wight


def BM3D_2nd_step(_basicImg, _noisyImg):
    '''Step 2. 最终的估计: 利用基本的估计,进行改进了的分组以及协同维纳滤波'''
    # 初始化一些参数:
    (width, height) = _noisyImg.shape
    block_Size = Step2_Blk_Size
    blk_step = Step2_Blk_Step
    Width_num = (width - block_Size) / blk_step
    Height_num = (height - block_Size) / blk_step

    # 初始化几个数组
    m_img, m_Wight, m_Kaiser = init(_noisyImg, block_Size, Beta_Kaiser)

    for i in range(int(Width_num + 2)):
        for j in range(int(Height_num + 2)):
            m_blockPoint = Locate_blk(i, j, blk_step, block_Size, width, height)
            Similar_Blks, Similar_Imgs, Positions, Count = Step2_fast_match(_basicImg, _noisyImg, m_blockPoint)
            Similar_Blks, Wiener_wight = Step2_3DFiltering(Similar_Blks, Similar_Imgs)
            Aggregation_Wiener(Similar_Blks, Wiener_wight, Positions, m_img, m_Wight, Count, m_Kaiser)
    m_img[:, :] /= m_Wight[:, :]
    Final = numpy.matrix(m_img, dtype=int)
    Final.astype(numpy.uint8)

    return Final


def Gauss_noise(img, sigma=25):
    noise = numpy.matlib.randn(img.shape) * sigma
    res = img + noise
    return res


def PSNR(img1, img2):
    D = numpy.array(img1 - img2, dtype=numpy.int64)
    D[:, :] = D[:, :] ** 2
    RMSE = D.sum() / img1.size
    psnr = 10 * math.log10(float(255. ** 2) / RMSE)
    return psnr


if __name__ == '__main__':
    cv2.setUseOptimized(True)  # OpenCV 中的很多函数都被优化过(使用 SSE2,AVX 等)。也包含一些没有被优化的代码。使用函数 cv2.setUseOptimized() 来开启优化。
    img_name = "./len128*128.jpg"  # 图像的路径
    ori = cv2.imread(img_name, cv2.IMREAD_GRAYSCALE)  # 读入图像,cv2.IMREAD_GRAYSCALE:以灰度模式读入图像
    cv2.imwrite("ori.jpg", ori)
    img = Gauss_noise(ori)
    cv2.imwrite("noise.jpg", img)

    print 'The PSNR After add noise %f' % PSNR(ori, img)
    # 记录程序运行时间
    e1 = cv2.getTickCount()  # cv2.getTickCount 函数返回从参考点到这个函数被执行的时钟数
    # if(img is not None):
    # print("success")
    Basic_img = BM3D_1st_step(img)
    e2 = cv2.getTickCount()
    time = (e2 - e1) / cv2.getTickFrequency()  # 计算函数执行时间
    print ("The Processing time of the First step is %f s" % time)
    cv2.imwrite("Basic3.jpg", Basic_img)

    print ("The PSNR between the two img of the First step is %f" % PSNR(ori, Basic_img))

    # Basic_img = cv2.imread("Basic3.jpg", cv2.IMREAD_GRAYSCALE)

    Final_img = BM3D_2nd_step(Basic_img, img)
    e3 = cv2.getTickCount()
    time = (e3 - e2) / cv2.getTickFrequency()
    print ("The Processing time of the Second step is %f s" % time)
    cv2.imwrite("Final3.jpg", Final_img)

    print ("The PSNR between the two img of the Second step is %f" % PSNR(ori, Final_img))
    time = (e3 - e1) / cv2.getTickFrequency()
    print ("The total Processing time is %f s" % time)

补充C++代码:https://github.com/gfacciol/bm3d

7. 最后

BM3D图像去噪算法原理及代码详解

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/133802.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Oracle经验总结!

    Oracle经验总结!

  • JVM 优化经验总结

    JVM 优化经验总结一、JVM架构图1.JVM总体概述JVM总体上是由类装载子系统(ClassLoader)、运行时数据区、执行引擎、内存回收这四个部分组成。其中我们最为关注的运行时数据区,也就是JVM的内存部分则是由方法区(MethodArea)、JAVA堆(Heap)、虚拟机栈(Stack)、程序计数器、本地方法栈这几部分组成;除此以外,在概念中还有一个直接内存的概念,事实上这部分内存并不属于虚拟机规范中定义的内存区域,但是因为在JDK1.4+后新加的NIO类,以及JDK1.8+后的Metaspace的关系,所

  • 左连接,右连接,内连接,全连接的区别及使用方式_外连接与内连接的区别

    左连接,右连接,内连接,全连接的区别及使用方式_外连接与内连接的区别左连接,右连接,内连接,全连接的区别及使用众所周知,我们在写sql时经常会用到多表查询数据,这就是涉及到连接的问题包括,左连接,右连接,内连接,全外连接。定义:左连接(leftjoin):返回包括左表的所有记录和右表中连接字段相等的记录右连接(rightjoin):返回包括右表的所有记录和左表中连接字段相等的记录等值连接或者叫内连接(innerjoin):只返回两表相连相等的行全外连接(fulljoin):返回左右表中所有的记录和左右表中连接字段相等的记录。只说概念还不够清晰举个例子

  • navicat怎么连接sql_内镜连接时的注意事项

    navicat怎么连接sql_内镜连接时的注意事项使用Navicat连接SqlServer注意事项1.需要到Navicat安装目录下安装驱动2.端口连接时ip与端口号用“,”隔开

  • java set集合详解

    java set集合详解参考地址:https://blog.csdn.net/qq_33642117/article/details/52040345一,SetSet:注重独一无二的性质,该体系集合可以知道某物是否已近存在于集合中,不会存储重复的元素用于存储无序(存入和取出的顺序不一定相同)元素,值不能重复。对象的相等性  引用到堆上同一个对象的两个引用是相等的。如果对两个引用调用hashCode方…

  • Redis客户端连接时崩溃

    Redis客户端连接时崩溃文章目录1.Redis客户端连接崩溃1.Redis客户端连接崩溃把protected-model设置为no

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号