最优化算法之粒子群算法(PSO)

最优化算法之粒子群算法(PSO)一、粒子群算法的概念  粒子群优化算法(PSO:Particleswarmoptimization)是一种进化计算技术(evolutionarycomputation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.  PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制…

大家好,又见面了,我是你们的朋友全栈君。

一、粒子群算法的概念

  粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.
  PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

二、粒子群算法分析

1、基本思想

  粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置。下面的动图很形象地展示了PSO算法的过程:
这里写图片描述

2、更新规则

  PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。
这里写图片描述
公式(1)的第一部分称为【记忆项】,表示上次速度大小和方向的影响;公式(1)的第二部分称为【自身认知项】,是从当前点指向粒子自身最好点的一个矢量,表示粒子的动作来源于自己经验的部分;公式(1)的第三部分称为【群体认知项】,是一个从当前点指向种群最好点的矢量,反映了粒子间的协同合作和知识共享。粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。以上面两个公式为基础,形成了PSO的标准形式
这里写图片描述
公式(2)和 公式(3)被视为标准PSO算法

3、PSO算法的流程和伪代码

这里写图片描述

4、PSO算法举例

这里写图片描述
这里写图片描述

5、PSO算法的demo

#include <iostream>
#include <vector>
#include <cmath>
#include <map>
#include <algorithm>
#include <random>
#include <ctime>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
const int dim = 1;//维数
const int p_num = 10;//粒子数量
const int iters = 100;//迭代次数
const int inf = 999999;//极大值
const double pi = 3.1415;
//定义粒子的位置和速度的范围
const double v_max = 4;
const double v_min = -2;
const double pos_max = 2;
const double pos_min = -1;
//定义位置向量和速度向量
vector<double> pos;
vector<double> spd;
//定义粒子的历史最优位置和全局最优位置
vector<double> p_best;
double g_best;
//使用eigen库定义函数值矩阵和位置矩阵
Matrix<double, iters, p_num> f_test;
Matrix<double, iters, p_num> pos_mat;
//定义适应度函数
double fun_test(double x)
{
double res = x * x + 1;
return res;
}
//初始化粒子群的位置和速度
void init()
{
//矩阵中所有元素初始化为极大值
f_test.fill(inf);
pos_mat.fill(inf);
//生成范围随机数
static std::mt19937 rng;
static std::uniform_real_distribution<double> distribution1(-1, 2);
static std::uniform_real_distribution<double> distribution2(-2, 4);
for (int i = 0; i < p_num; ++i)
{
pos.push_back(distribution1(rng));
spd.push_back(distribution2(rng));
}
vector<double> vec;
for (int i = 0; i < p_num; ++i)
{
auto temp = fun_test(pos[i]);//计算函数值
//初始化函数值矩阵和位置矩阵
f_test(0, i) = temp;
pos_mat(0, i) = pos[i];
p_best.push_back(pos[i]);//初始化粒子的历史最优位置
}
std::ptrdiff_t minRow, minCol;
f_test.row(0).minCoeff(&minRow, &minCol);//返回函数值矩阵第一行中极小值对应的位置
g_best = pos_mat(minRow, minCol);//初始化全局最优位置
}
void PSO()
{
static std::mt19937 rng;
static std::uniform_real_distribution<double> distribution(0, 1);
for (int step = 1; step < iters; ++step)
{
for (int i = 0; i < p_num; ++i)
{
//更新速度向量和位置向量
spd[i] = 0.5 * spd[i] + 2 * distribution(rng) * (p_best[i] - pos[i]) +
2 * distribution(rng) * (g_best - pos[i]);
pos[i] = pos[i] + spd[i];
//如果越界则取边界值
if (spd[i] < -2 || spd[i] > 4)
spd[i] = 4;
if (pos[i] < -1 || pos[i] > 2)
pos[i] = -1;
//更新位置矩阵
pos_mat(step, i) = pos[i];
}
//更新函数值矩阵
for (int i = 0; i < p_num; ++i)
{
auto temp = fun_test(pos[i]);
f_test(step, i) = temp;
}
for (int i = 0; i < p_num; ++i)
{
MatrixXd temp_test;
temp_test = f_test.col(i);//取函数值矩阵的每一列
std::ptrdiff_t minRow, minCol;
temp_test.minCoeff(&minRow, &minCol);//获取每一列的极小值对应的位置
p_best[i] = pos_mat(minRow, i);//获取每一列的极小值,即每个粒子的历史最优位置
}
g_best = *min_element(p_best.begin(), p_best.end());//获取全局最优位置
}
cout << fun_test(g_best);
}
int main()
{
init();
PSO();
system("pause");
return 0;
}

参考:https://blog.csdn.net/myarrow/article/details/51507671
https://blog.csdn.net/google19890102/article/details/30044945
https://wenku.baidu.com/view/65c600b9294ac850ad02de80d4d8d15abe230048.html
https://blog.csdn.net/darin1997/article/details/80675933

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/132684.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • Java中containsKey()方法[通俗易懂]

    Java中containsKey()方法[通俗易懂]containsKey方法——判断是否包含指定的键名在HashMap中经常用到containsKey()来判断键(key)是否存在。HashMap中允许值对象(value)为null,并且没有个数限制,所以当get()方法的返回值为null时,可能有两种情况:一种是在HashMap中没有该键对象,另一种是该键对象没有映射任何值对象,即值对象为null。因此,在HashMap中不应该利用get()方法来判断是否存在某个键,而应该利用containsKey()方法来判断。例如:HashMap&l

  • ASP.NET MVC商城网站

    ASP.NET MVC商城网站本项目使用了大量的插件,所有的商品数据皆为动态加载,全部从数据库中读取呈现在界面上,具备商品评论,添加/移除购物车商品,邮箱发送验证码进行注册等功能。同时本项目配备商品后台管理系统,用来对商品信息和用户信息进行管理,同时还可查看商品的相关数据汇总。本项目仅用于学习参考,作为练习或者是实训项目也是刚刚好。界面展示(部分)代码太多了,就不进行部分展示了。…

  • 用vscode写博客和发布

    用vscode写博客和发布

  • sql error 904_mysql报2005错误

    sql error 904_mysql报2005错误mysql清除relay-log文件方法详解mysql清除relay-log文件方法详解今天在本机的mysql数据目录下发现了许多类似hostname-relay-bin.0000*的文件,该文件一般是在mysqlslave实例上存在。主要用途是记录主从同步的信息,正常情况下会自动删除的。本机未配置过master、slave,…文章白及882016-02-245754浏览量exp导出出现…

  • Fork/Join框架基本使用[通俗易懂]

    1.概述ava.util.concurrent.ForkJoinPool由Java大师DougLea主持编写,它可以将一个大的任务拆分成多个子任务进行并行处理,最后将子任务结果合并成最后的计算结果,并进行输出。本文中对Fork/Join框架的讲解,基于JDK1.8+中的Fork/Join框架实现,参考的Fork/Join框架主要源代码也基于JDK1.8+。这几篇文章将试图解释Fork/…

  • header中Content-Disposition的作用

    header中Content-Disposition的作用

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号