VIF方法(方差膨胀因子)因子独立性检验 全流程解读

VIF方法(方差膨胀因子)因子独立性检验 全流程解读    基于因子模型的选股策略是股票市场量化应用最广泛的模型之一。然而很多时候,使用因子模型在实盘运行的绩效并不理想,究其原因可能是由于因子选择的偏差,市场风格轮动等。但还有一个显著的因素,就是选取因子之间可能存在高度的多重共线性,导致模型对股票价格与市场的解释能力存在很大偏误。       为了在筛选因子之初就避免陷入这样的误区。本文介绍一种VIF(方差膨胀检验)方法,来对因子之…

大家好,又见面了,我是你们的朋友全栈君。

       基于因子模型的选股策略是股票市场量化应用最广泛的模型之一。然而很多时候,使用因子模型在实盘运行的绩效并不理想,究其原因可能是由于因子选择的偏差,市场风格轮动等。但还有一个显著的因素,就是选取因子之间可能存在高度的多重共线性,导致模型对股票价格与市场的解释能力存在很大偏误。

 

       为了在筛选因子之初就避免陷入这样的误区。本文介绍一种VIF(方差膨胀检验)方法,来对因子之间的线性相关关系进行检验,从而帮助投资者们在可以选取到独立性更好的因子,增强因子模型的解释能力。

 

 

一、方法介绍

 

 

  所谓VIF方法,计算难度并不高。在线性回归方法里,应用最广泛的就是最小二乘法(OLS),只不过我们对每个因子,用其他N个因子进行回归解释。

 

  其中有一个检验模型解释能力的检验统计指标为R^2(样本可决系数),R^2的大小决定了解释变量对因变量的解释能力。而为了检验因子之间的线性相关关系,我们可以通过OLS对单一因子和解释因子进行回归,然后如果其R^2较小,说明此因子被其他因子解释程度较低,线性相关程度较低。

 

  注:之所以不使用协方差计算相关性是由于协方差难以应用在多元线性相关情况下。给出VIF计算方法:

 

                                                                  VIF方法(方差膨胀因子)因子独立性检验 全流程解读

 

从上文很容易看出,VIF越高解释变量和因变量之间线性相关性就越强。

 

 

二、检验实践

 

 

  数据来源:聚宽量化平台投资研究板块

  选取因子:EPS(每股收益),

  ROE(净资产收益率),

  market_cap(市值),

  pb(市净率),

  ’net_profit_ratio’(销售净利率),

  ’gross_income_ratio’,(销售毛利率)

  ’quick_ratio’,(速动比率)

  ’current_ratio’(流动比率(单季度))

  (后面四个因子来源于聚宽因子库)

 

时间窗口选取:2012.3.4—2018.7.4

回望频率:两个月检

 

 

1. 获取数据:(鉴于篇幅仅展示2012-03-04当日前十支股票相关因子数据)

 

                               VIF方法(方差膨胀因子)因子独立性检验 全流程解读

 

2. 缺失值检验:(鉴于篇幅仅展示2013-03-04当日检验情况)

返回0代表无缺失值,返回其他数字代表缺失值数量

 

                                                      VIF方法(方差膨胀因子)因子独立性检验 全流程解读

 

3. 被检验两两因子间线性相关性预了解(图例,鉴于篇幅仅展示2013-03-04当日检验情况)

 

   VIF方法(方差膨胀因子)因子独立性检验 全流程解读

                                             案例图表示,各因子对市值因子market_cap的解释能力

                                                  蓝色阴影部分,是回归直线斜率95%的置信区间

 

4. 计算并获取每个时点下被解释因子与其余7个因子之间的回归VIF值,绘制时间序列图

 

                                         VIF方法(方差膨胀因子)因子独立性检验 全流程解读

 

  分别是百分比堆积图,和绝对数值图(柱状图)。通过百分比堆积图可以看出,各因子的VIF值全程比较稳定,所以其占据总体的百分比也稳定。柱状图可以看出各因子值细节,各位读者可以去聚宽克隆该研究,即可看到更清晰图片。

 

5. 全段测试计算时间内,各因子VIF值均值,比较大小(图例)

 

                                       VIF方法(方差膨胀因子)因子独立性检验 全流程解读

 

6. 相比而言quick_ratio这一因子的VIF在窗口期平均值较低,因而这就提示了我们如果在构建因子模型时,采用其余其中因子时可以考虑添加这一因子,增强模型的解释能力。

 

 

三、方法总结与体会

 

 

  使用VIF进行检验的方法主要为,对某一因子和其余因子进行回归,得到R^2,计算VIF,剔除因子中VIF高的因子,保留VIF较低的因子,以此类推,直到得到一个相关性较低的因子组合来增强模型的解释能力。

 

  在实际测试过程中,并非要指定一个VIF阈值,比如某因子的VIF值超过阈值才剔除,而是通过观察所有因子值的VIF值,如果发现该值较大(显著离群),剔除该因子即可。本次我们的几个因子表现都非常出色,VIF值稳定且没有离群较大值,因此,没能找到任何一个需要剔除的因子。

 

点击阅读原文

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/132336.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • PhpSpreadsheet_中文在线集团简介

    PhpSpreadsheet_中文在线集团简介1、PhpSpreadsheet是什么PhpSpreadsheet是一个用纯PHP编写的库,提供了一组类,使您可以读取和写入不同的电子表格文件格式PhpSpreadsheet提供了丰富的API接口,可以设置诸多单元格以及文档属性,包括样式、图片、日期、函数等等诸多应用,总之你想要什么样的Excel表格,PhpSpreadsheet都能做到使用PhpSpreadsheet开发的PHP要求7.1或更高版本PhpSpreadsheet支持链式操作2、PhpSpreadsheet支持的文件格式

  • 移动ipv6不是公网_移动光纤申请公网ip

    移动ipv6不是公网_移动光纤申请公网ip 之前有人看到我的蜗牛在移动宽带下还能搞外网访问《奶妈级教程:移动宽带下的IPV6+DDNS+私有域名访问黑群晖》,各种问我怎么申请IPv6?搞得我一头雾水,因为真的不需要申请!!!  早在2018年5月份,全网已经开始实施IPv6全覆盖了,移动宽带光纤能到的地方貌似都已经开通了IPv6了,所以我们需要的只是一个能获取IPv6的光猫而已。  最直接的方法当然是打10086去问问啦,不过貌似客服知道的也不多,甚至不知道IPv6是啥?  那就自己度娘“光猫型号+参数”,自己去看支不支持吧?  又

  • ESP32开发之旅——RC522模块的使用

    ESP32开发之旅——RC522模块的使用ESP32开发之旅——RC522模块的使用前言在本文中,您将学会如何使用ESP32连接RFID模块RC522,本文提供了简单的示例供学习参考。需要注意的是,本文中的ESP32是使用MicroPython进行开发的,(同时ESP8266也可按照本文进行开发)。本文中出现的代码是从GitHub开源库中搬运而来,GitHub链接已放在文尾。RFID-RC522模块的简单介绍​ 射频识别RFID(RadioFrequencyIdentification)是一种无线数据传输系统,用于在标签和读取

  • Windows系统下配置允许Redis远程访问

    Windows系统下配置允许Redis远程访问

  • mysql查询前五条记录_mysql查询前50条数据

    mysql查询前五条记录_mysql查询前50条数据SELECT*FROMtableLIMIT5;select*fromissu_infolimit0

  • 图片加载失败显示默认图片

    图片加载失败显示默认图片在页面加载的图片的时候,如果图片不存在或者路径不存在,页面加载图片就会如下图所示。解决方法:在img标签中添加一下标签onerror=”onerror=null;src=’img/a3.jpg'”src中写默认图片地址即可

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号