视频目标检测识别

视频目标检测识别之前文章目标检测API已经介绍过API的基本使用,这里就不赘述了,直接上本次内容的代码了,添加的内容并不多。将测试的test.mp4原文件放到models-master\research\object_detection路径下,并创建一个detect_video.py文件,代码内容如下:importosimportcv2importtimeimportargparseim…

大家好,又见面了,我是你们的朋友全栈君。

之前文章目标检测API 已经介绍过API的基本使用,这里就不赘述了,直接上本次内容的代码了,添加的内容并不多。将测试的test.mp4原文件放到models-master\research\object_detection路径下,并创建一个detect_video.py文件,代码内容如下:

import os
import cv2
import time
import argparse
import multiprocessing
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
import matplotlib
# Matplotlib chooses Xwindows backend by default.
matplotlib.use('Agg')
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

'''
视频目标追踪
'''

# Path to frozen detection graph. This is the actual model that is used for the object detection.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
PATH_TO_CKPT = os.path.join(MODEL_NAME, 'frozen_inference_graph.pb')

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

def detect_objects(image_np, sess, detection_graph):
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

    # Each box represents a part of the image where a particular object was detected.
    boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

    # Each score represent how level of confidence for each of the objects.
    # Score is shown on the result image, together with the class label.
    scores = detection_graph.get_tensor_by_name('detection_scores:0')
    classes = detection_graph.get_tensor_by_name('detection_classes:0')
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')

    # Actual detection.
    (boxes, scores, classes, num_detections) = sess.run(
        [boxes, scores, classes, num_detections],
        feed_dict={image_tensor: image_np_expanded})

    # Visualization of the results of a detection.
    vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=8)
    return image_np

#Load a frozen TF model
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')



#import imageio
#imageio.plugins.ffmpeg.download()
# Import everything needed to edit/save/watch video clips
from moviepy.editor import VideoFileClip
from IPython.display import HTML

def process_image(image):
    # NOTE: The output you return should be a color image (3 channel) for processing video below
    # you should return the final output (image with lines are drawn on lanes)
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            # 如果出现错误:ValueError: assignment destination is read-only,则将下面一行改为:
            #  image_process = detect_objects(np.array(image), sess, detection_graph)
            image_process = detect_objects(image, sess, detection_graph)
            return image_process

white_output = 'test_out.mp4'
clip1 = VideoFileClip("test.mp4").subclip(1,9)
white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!s
white_clip.write_videofile(white_output, audio=False)

HTML("""
<video width="960" height="540" controls>
  <source src="{0}">
</video>
""".format(white_output))

检测结果:
检测结果
更新一个独立的检测现有视频脚本,这样可以方便在任意路径使用:

from moviepy.editor import VideoFileClip
from IPython.display import HTML
import tensorflow as tf
import cv2 as cv
import time

#Load a frozen TF model
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile('./frozen_inference_graph.pb', 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

def detect_objects(image, sess, detection_graph):

    height = image.shape[0]   
    width = image.shape[1]    
    channel = image.shape[2]  
    start_time = time.time()
    # Run the model
    out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
                    sess.graph.get_tensor_by_name('detection_scores:0'),
                    sess.graph.get_tensor_by_name('detection_boxes:0'),
                    sess.graph.get_tensor_by_name('detection_classes:0')],
                    feed_dict={'image_tensor:0': image.reshape(1, height, width, channel)})

    end_time = time.time()
    runtime = end_time - start_time
    print('run time:%f' % (runtime * 1000) + 'ms')

    # Visualize detected bounding boxes.
    num_detections = int(out[0][0])

    # Iterate through the number of checked out rectangular boxes on the picture
    for i in range(num_detections):
        classId = int(out[3][0][i])
        score = float(out[1][0][i])
        bbox = [float(v) for v in out[2][0][i]]

        if score > 0.8:  # 这里的阈值自行修改即可
            #print(score)
            x = bbox[1] * width
            y = bbox[0] * height
            right = bbox[3] * width
            bottom = bbox[2] * height
            # Draw rectangular box
            font = cv.FONT_HERSHEY_SIMPLEX  # Use default fonts
            cv.rectangle(image, (int(x), int(y)), (int(right), int(bottom)), (0, 0, 255), thickness=2)
            cv.putText(image, '{}:'.format(classId) + str(('%.3f' % score)), (int(x), int(y - 9)), font, 0.6,
                        (0, 0, 255), 1)
    return image


def process_image(image):
    # NOTE: The output you return should be a color image (3 channel) for processing video below
    # you should return the final output (image with lines are drawn on lanes)
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            image_process = detect_objects(image, sess, detection_graph)
            return image_process

white_output = 'test_out.mp4'
# 使用 VideoFileClip 函数从视频中抓取图片,subclip(1,9)代表识别视频中1-9s这一时间段
clip1 = VideoFileClip("test.mp4").subclip(1,9)
# 用fl_image函数将原图片替换为修改后的图片,用于传递物体识别的每张抓取图片
white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!
# 修改的剪辑图像被组合成为一个新的视频
white_clip.write_videofile(white_output, audio=False)

HTML("""
<video width="960" height="540" controls>
  <source src="{0}">
</video>
""".format(white_output))

上面的对现有的视频中目标进行检测的,那么怎样实时的对现实生活中的目标进行检测呢?这个其实也很简单,我们来创建一个object_detection_tutorial_video.py 文件,具体的代码如下:

import numpy as np  
import os  
import six.moves.urllib as urllib  
import sys  
import tarfile  
import tensorflow as tf  
import zipfile  
import matplotlib  
import cv2
# Matplotlib chooses Xwindows backend by default.  
matplotlib.use('Agg')  

from collections import defaultdict  
from io import StringIO  
from matplotlib import pyplot as plt  
from PIL import Image  
from utils import label_map_util  
from utils import visualization_utils as vis_util  

'''
    检测视频中的目标
'''

cap = cv2.VideoCapture(0)  #打开摄像头

##################### Download Model  
# What model to download.  
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'  
MODEL_FILE = MODEL_NAME + '.tar.gz'  
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'  
  
# Path to frozen detection graph. This is the actual model that is used for the object detection.  
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'  
  
# List of the strings that is used to add correct label for each box.  
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')  
  
NUM_CLASSES = 90  
  
# Download model if not already downloaded  
if not os.path.exists(PATH_TO_CKPT):  
    print('Downloading model... (This may take over 5 minutes)')  
    opener = urllib.request.URLopener()  
    opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)  
    print('Extracting...')  
    tar_file = tarfile.open(MODEL_FILE)  
    for file in tar_file.getmembers():  
        file_name = os.path.basename(file.name)  
        if 'frozen_inference_graph.pb' in file_name:  
            tar_file.extract(file, os.getcwd())  
else:  
    print('Model already downloaded.')  
  
##################### Load a (frozen) Tensorflow model into memory.  
print('Loading model...')  
detection_graph = tf.Graph()  
  
with detection_graph.as_default():  
    od_graph_def = tf.GraphDef()  
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:  
        serialized_graph = fid.read()  
        od_graph_def.ParseFromString(serialized_graph)  
        tf.import_graph_def(od_graph_def, name='')  
  
##################### Loading label map  
print('Loading label map...')  
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)  
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)  
category_index = label_map_util.create_category_index(categories)  
  
##################### Helper code  
def load_image_into_numpy_array(image):  
  (im_width, im_height) = image.size  
  return np.array(image.getdata()).reshape(  
      (im_height, im_width, 3)).astype(np.uint8)  
  
##################### Detection ###########
  
print('Detecting...')  
with detection_graph.as_default():  
    with tf.Session(graph=detection_graph) as sess:
        
        # print(TEST_IMAGE_PATH)
        # image = Image.open(TEST_IMAGE_PATH)
        # image_np = load_image_into_numpy_array(image)
        while True:                              
            ret, image_np = cap.read()           #从摄像头中获取每一帧图像
            image_np_expanded = np.expand_dims(image_np, axis=0)
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            scores = detection_graph.get_tensor_by_name('detection_scores:0')
            classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')
            # Actual detection.
            (boxes, scores, classes, num_detections) = sess.run(
            [boxes, scores, classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})
             # Print the results of a detection.
            print(scores)
            print(classes)
            print(category_index)
            vis_util.visualize_boxes_and_labels_on_image_array(
                image_np,
                np.squeeze(boxes),
                np.squeeze(classes).astype(np.int32),
                np.squeeze(scores),
                category_index,
                use_normalized_coordinates=True,
                line_thickness=8)

            cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
			#cv2.waitKey(0)
            if cv2.waitKey(25) & 0xFF == ord('q'):
                cv2.destroyAllWindows()
                break

代码中只是添加了摄像头来获取每一帧图像,处理方式和静态的图片差不多,这里就不多说了。这里就不上测试的结果了,大家课可以实际的跑一下程序即可看到结果。


更新 2020.05.04

更新一个单独运行的实时获取摄像头进行检测脚本:

import argparse
import tensorflow as tf
import numpy as np
import time
import cv2 as cv

'''
    video det


    use:

    python Video.py \
        --model=xxx.pb \
        --threshold=0.65
      
'''

# os.environ['CUDA_VISIBLE_DEVICES'] = "0"

parser = argparse.ArgumentParser('TensorFlow')

parser.add_argument('--model', required=True, help='pb file')
parser.add_argument('--threshold', type=float, required=True, help='Detection threshold')
args = parser.parse_args()

# open camera
cap = cv.VideoCapture(0)
if not cap.isOpened():
    print("cannot open camera")
    exit()

# Read the graph.
with tf.gfile.FastGFile(args.model, 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())

config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)

config.gpu_options.allow_growth = True

with tf.Session(config=config) as sess:
    # Restore session
    sess.graph.as_default()
    tf.import_graph_def(graph_def, name='')

    while True:
        ret, image_np = cap.read()
        if not ret:
            print("Cant't receive frame. Exiting....")
            break

        height = image_np.shape[0]
        width = image_np.shape[1]
        channel = image_np.shape[2]

        image_np_expanded = np.expand_dims(image_np, axis=0)

        start_time = time.time()
        # Run the model
        out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
                        sess.graph.get_tensor_by_name('detection_scores:0'),
                        sess.graph.get_tensor_by_name('detection_boxes:0'),
                        sess.graph.get_tensor_by_name('detection_classes:0')],
                       feed_dict={'image_tensor:0': image_np_expanded})

        end_time = time.time()
        runtime = end_time - start_time
        print('run time:%f' % (runtime * 1000) + 'ms')

        # Visualize detected bounding boxes.
        num_detections = int(out[0][0])

        for i in range(num_detections):
            classId = int(out[3][0][i])
            score = float(out[1][0][i])

            bbox = [float(v) for v in out[2][0][i]]
            if score > args.threshold:
                x = bbox[1] * width
                y = bbox[0] * height
                right = bbox[3] * width
                bottom = bbox[2] * height
                # draw boxes
                font = cv.FONT_HERSHEY_SIMPLEX
                cv.rectangle(image_np, (int(x), int(y)), (int(right), int(bottom)), (0, 0, 255), thickness=2)
                cv.putText(image_np, '{}:'.format(classId) + str(('%.3f' % score)), (int(x), int(y - 9)), font, 0.6,
                           (0, 0, 255), 1)

                cv.imshow('object detection', cv.resize(image_np, (800, 600)))

        if cv.waitKey(1) == ord('q'):
            break

    cap.release()
    cv.destroyAllWindows()

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/132180.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号