Python的random函数用法详解[通俗易懂]

Python的random函数用法详解[通俗易懂]在random模块下提供了如下常用函数:random.seed(a=None,version=2):指定种子来初始化伪随机数生成器。random.randrange(start,stop[,stop]):返回从start开始到stop结束、步长为step的随机数。其实就相当于choice(range(start,stop,step))的效果,只不过实际底层并不生成区间对象。random.randint(a,b):生成一个范围为a≤N≤b的随机数。其等同于ra

大家好,又见面了,我是你们的朋友全栈君。

在 random 模块下提供了如下常用函数:

random.seed(a=None, version=2):指定种子来初始化伪随机数生成器。

random.randrange(start, stop[, stop]):返回从 start 开始到 stop 结束、步长为 step 的随机数。其实就相当于 choice(range(start, stop, step)) 的效果,只不过实际底层并不生成区间对象。

random.randint(a, b):生成一个范围为 a≤N≤b 的随机数。其等同于 randrange(a, b+1) 的效果。

random.choice(seq):从 seq 中随机抽取一个元素,如果 seq 为空,则引发 IndexError 异常。

random.choices(seq, weights=None, cum_weights=None, k=1):从 seq 序列中抽取 k 个元素,还可通过 weights 指定各元素被抽取的权重(代表被抽取的可能性高低)。

random.shuffle(x[, random]):对 x 序列执行洗牌“随机排列”操作。

random.sample(population, k):从 population 序列中随机抽取 k 个独立的元素。

random.random():生成一个从0.0(包含)到 1.0(不包含)之间的伪随机浮点数。

random.uniform(a, b):生成一个范围为 a≤N≤b 的随机数。

random.expovariate(lambd):生成呈指数分布的随机数。其中 lambd 参数(其实应该是 lambda,只是 lambda 是 Python 关键字,所以简写成 lambd)为 1 除以期望平均值。如果 lambd 是正值,则返回的随机数是从 0 到正无穷大;如果 lambd 为负值,则返回的随机数是从负无穷大到 0。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/132099.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号