大家好,又见面了,我是你们的朋友全栈君。
方差膨胀系数(variance inflation factor,VIF)是衡量多元线性回归模型中复 (多重)共线性严重程度的一种度量。它表示回归系数估计量的方差与假设自变量间不线性相关时方差相比的比值。
VIF的取值大于1。VIF值越接近于1,多重共线性越轻,反之越重。当多重共线性严重时,应采取适当的方法进行调整
[3] 。容忍度的值界于0至1之间,当容忍度值较小时,表示此自变量与其他自变量之间存在共线性。容忍度这个变量回归系数的估计值不够稳定,则回归系数的计算值也会有很大误差。方差膨胀系数是容忍度的倒数,VIF越大,表示自变量的容忍度越小,越有共线性问题。
import numpy as np
from sklearn.linear_model import LinearRegression
coef0=np.array([5,6,7,8,9,10,11,12])
X1=np.random.rand(100,8)
y=np.dot(X1,coef0)+np.random.normal(0,1.5,size=100)
training=np.random.choice([True,False],p=[0.8,0.2],size=100)
lr1=LinearRegression()
lr1.fit(X1[training],y[training])
# 系数的均方误差MSE
print(((lr1.coef_-coef0)**2).sum()/8)
# 测试集准确率(R2)
print(lr1.score(X1[~training],y[~training]))
X2=np.column_stack([X1,np.dot(X1[:,[0,1]],np.array([1,1]))+np.random.normal(0,0.05,size=100)])
X2=np.column_stack([X2,np.dot(X2[:,[1,2,3]],np.array([1,1,1]))+np.random.normal(0,0.05,size=100)])
X3=np.column_stack([X1,np.random.rand(100,2)])
import matplotlib.pyplot as plt
clf=LinearRegression()
vif2=np.zeros((10,1))
for i in range(10):
tmp=[k for k in range(10) if k!=i]
clf.fit(X2[:,tmp],X2[:,i])
vifi=1/(1-clf.score(X2[:,tmp],X2[:,i]))
vif2[i]=vifi
plt.figure()
ax = plt.gca()
ax.plot(vif2)
#ax.plot(vif3)
plt.xlabel(‘feature’)
plt.ylabel(‘VIF’)
plt.title(‘VIF coefficients of the features’)
plt.axis(‘tight’)
plt.show()
转载于:https://www.cnblogs.com/liu-304711/p/10945717.html
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/132045.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...