Spatial Dropout

Spatial DropoutSpatialDropout是Tompson等人在图像领域提出的一种dropout方法。普通的dropout会随机地将部分元素置零,而SpatialDropout会随机地将部分区域置零,该dropout方法在图像识别领域实践证明是有效的。dropoutdropout是怎么操作的?一般来说,对于输入的张量x,dropout就是随机地将部分元素置零,然后对结果做一个尺度变换。比如,我们随机初始化一…

大家好,又见面了,我是你们的朋友全栈君。

SpatialDropout是Tompson等人在图像领域提出的一种dropout方法。普通的dropout会随机地将部分元素置零,而SpatialDropout会随机地将部分区域置零,该dropout方法在图像识别领域实践证明是有效的。

dropout

dropout是怎么操作的?一般来说,对于输入的张量x,dropout就是随机地将部分元素置零,然后对结果做一个尺度变换。比如,我们随机初始化一个5×10的二维矩阵,即;

import numpy as np
x = np.random.random((4,5))
print(x)
def Dropout(x,drop_proba):
    return x * np.random.choice(
        [0,1],
        x.shape,
        p = [drop_proba,1-drop_proba]
    ) / (1. - drop_proba)
print(Dropout(x,0.5))
# x
[[0.56189429 0.03603615 0.97580132 0.36180956 0.55606632]
 [0.81176104 0.47364453 0.97262952 0.04289464 0.42820463]
 [0.26016082 0.61274373 0.10307323 0.84194222 0.48404058]
 [0.37371407 0.88847782 0.37580269 0.97473358 0.7809447 ]]

# dropout(x,0.5)
[[0.         0.07207229 0.         0.         1.11213264]
 [1.62352208 0.         1.94525904 0.08578928 0.        ]
 [0.52032163 1.22548745 0.         0.         0.        ]
 [0.         1.77695563 0.75160539 1.94946716 0.        ]]

可以看到,Dropout操作随机地将部分元素置零,并且对非零部分做了一个尺度变换。尺度变换的幅度跟初始化的drop_rate有关。

作用

一般,我们会将dropout理解为“一种低成本的集成策略”,这是对的,具体过程可以大概这样理解:
经过上述置零操作后,我们可以认为零的部分是被丢弃的,丢失了一部分信息。因而,逼着模型用剩下的信息区拟合目标。然而每次dropout是随机的。我们就不能侧重于某些节点,所以总的来说就是—每次逼着模型用少量的特征学习,每次被学习的特征又不同,那么就是说,每个特征都应该对
模型的预测有所贡献(而不是侧重于部分特征,导致过拟合)。

SpatialDropout

接下来,我们来详细看看keras模块中SpatialDropout具体做了啥,如下图所示:

Spatial Dropout


左:普通的dropout,右:SpatialDropout

首先,让我们看看SpatialDropout1D的输入和输出。SpatialDropout1D的输入是三维张量(samples,timesteps,channels),输出的纬度与输入的纬度相同。

我们以文本为例,一个文本的三维张量可以表示为(samples,sequence_length,embedding_dim),其中:

  • sequence_length表示句子的长度
  • embedding_dim表示词向量的纬度
    如下图所示:
Spatial Dropout

当我们对该张量使用dropout技术时,你会发现普通的dropout会随机独立地将部分元素置零,而SpatialDropout1D会随机地对某个特定的纬度全部置零,如下图所示:

Spatial Dropout


左:普通的dropout,右:SpatialDropout1D

接下来,我们简单的以一个简单的案例说明,首先,我们初始化一个1x7x5的三维张量,如下所示:

#encoding:utf-8
import numpy as np
import keras.backend as K
ary = np.arange(35).reshape((1, 7, 5))
inputs = K.variable(ary)
print(ary)
# result
[[[ 0  1  2  3  4]
  [ 5  6  7  8  9]
  [10 11 12 13 14]
  [15 16 17 18 19]
  [20 21 22 23 24]
  [25 26 27 28 29]
  [30 31 32 33 34]]]

接下来,我们将分别对该张量使用dropout和SpatialDropout1D技术。

首先,我们先对该张量测试普通的dropout,其中dropout_rate为0.5:

dropout_1 = K.eval(K.dropout(inputs, level=0.5))
print(dropout_1)
# result
[[[ 0.  2.  4.  6.  8.]
  [ 0.  0. 14. 16. 18.]
  [ 0.  0. 24.  0. 28.]
  [ 0. 32. 34.  0.  0.]
  [40.  0.  0.  0. 48.]
  [ 0. 52.  0. 56.  0.]
  [ 0. 62. 64.  0.  0.]]]

从结果中,我们可以看到普通的dropout随机地将部分元素置零,并且是无规律的,也就是说下次可能是另外一部分元素置零。

接下来,然后我们对该张量测试SpatialDropout1D,要达到SpatialDropout1D的效果。我们需要指定dropout的shape,对应dropout函数中的参数noise_shape。

noise_shape是一个一维张量,说白了就是一个一维数组,长度必须跟inputs.shape一样,而且,noise_shape的元素,只能是1或者inputs.shape里面对应的元素。比如inputs.shape= (3,4,5)
,那么noise_shape就只能是以下8种情况:

(3,4,5),(1,4,5),(3,1,5),(3,4,1),(1,1,5),(1,4,1),(3,1,1,),(1,1,1)

实际上,哪个轴为1,哪个轴就会被一致的dropout,比如(3,4,5)是就是普通的dropout,没有任何约束

因此,从上图中,我们想要实现SpatialDropout1D,noise_shape应为(input_shape[0], 1, input_shape[2]),即:

input_shape=K.shape(inputs)
noise_shape=(input_shape[0], 1, input_shape[2])
dropout_2 = K.eval(K.dropout(inputs, 0.5, noise_shape))
print(dropout_2)
# result
[[[ 0.  2.  0.  6.  8.]
  [ 0. 12.  0. 16. 18.]
  [ 0. 22.  0. 26. 28.]
  [ 0. 32.  0. 36. 38.]
  [ 0. 42.  0. 46. 48.]
  [ 0. 52.  0. 56. 58.]
  [ 0. 62.  0. 66. 68.]]]

可以看到,与普通的dropout不同的是,SpatialDropout1D随机地将某块区域全部置零。

实际上,我们也可以横向将部分区域全部置零,只需修改noise_shape即可,即:

noise_shape = (input_shape[0], input_shape[1], 1)
dropout_3 = K.eval(K.dropout(inputs, 0.5, noise_shape))
print(dropout_3)
# result
[[[ 0.  2.  4.  6.  8.]
  [ 0.  0.  0.  0.  0.]
  [20. 22. 24. 26. 28.]
  [ 0.  0.  0.  0.  0.]
  [40. 42. 44. 46. 48.]
  [50. 52. 54. 56. 58.]
  [60. 62. 64. 66. 68.]]]

所以,通过修改noise_shape,本质上我们可以实现任意功能的dropout。

在keras模块中,一般我们实现一个新的dropout,会按照下列模板进行,比如;

class TimestepDropout(Dropout):
    def __init__(self, rate, **kwargs):
        super(TimestepDropout, self).__init__(rate, **kwargs)
        self.input_spec = InputSpec(ndim=3)
    def _get_noise_shape(self, inputs):
        input_shape = K.shape(inputs)
        noise_shape = (input_shape[0], input_shape[1], 1)
        return noise_shape

:本质上是修改noise_shape,新类TimestepDropout继承了Dropout,我们知道当子类中存在与父类相同的函数时,子类的函数会更新父类函数。所以本质上就是修改获取noise_shape的函数。

备注:最近刚开始学习pytorch

pytorch

import torch.nn as nn
from itertools import repeat
class Spatial_Dropout(nn.Module):
    def __init__(self,drop_prob):

        super(Spatial_Dropout,self).__init__()
        self.drop_prob = drop_prob

    def forward(self,inputs):
        output = inputs.clone()
        if not self.training or self.drop_prob == 0:
            return inputs
        else:
            noise = self._make_noise(inputs)
            if self.drop_prob == 1:
                noise.fill_(0)
            else:
                noise.bernoulli_(1 - self.drop_prob).div_(1 - self.drop_prob)
            noise = noise.expand_as(inputs)
            output.mul_(noise)
        return output

    def _make_noise(self,input):
        return input.new().resize_(input.size(0),*repeat(1, input.dim() - 2),input.size(2))
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/131854.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • UML及UML建模工具介绍

    UML及UML建模工具介绍UML简介UnifiedModelingLanguage(UML)又称统一建模语言或标准建模语言,是始于1997年一个OMG标准,它是一个支持模型化和软件系统开发的图形化语言,为软件开发的所有阶段提供模型化和可视化支持,包括由需求分析到规格,到构造和配置。面向对象的分析与设计(OOA&D,OOAD)方法的发展在80年代末至90年代中出现了一个高潮,UML是这个高潮的产物。它不…

  • H5即时通讯聊天系统源码lM聊天「建议收藏」

    H5即时通讯聊天系统源码lM聊天「建议收藏」简介:安装宝塔宝塔环境:Nginx1.18+PHP7.3+MySQL5.6+MongoDB4.0安装php扩展,fileinfo,Swoole4,mongodb三个扩展删除php的所有禁用函数宝塔放行端口1-65535添加站点,上传IM文件夹里面的文件到站点根目录下,权限设置成777修改站点,伪静态设置thinkphp,网站目录选择/web/public默认文档把index.html移到最上面添加数据库,并导入数据3eym.com.sql.gzmongod的数据库需

  • stack overflow at line 9[通俗易懂]

    stack overflow at line 9[通俗易懂]web开发中,从设备得到一些信息显示在web页面中的文本框中,结果显示对话框1.起初认为可能是文本框的字符限制原因,有默认长度,故加上maxlength=128足够长,结果问题还是存在。2.因为这个问题在goole火狐 搜狗浏览器中都不存在,在IE6 360极速浏览器中存在,所以认为可能是浏览器的设置问题,从网上找了一下,解决办法是:打开IE的工具-Internet选项

  • linux编辑文件命令vim怎么退出_vim退出不保存的命令

    linux编辑文件命令vim怎么退出_vim退出不保存的命令Linux(Ubuntu)vim编辑器保存退出命令进入vim编辑器,输入i进入编辑状态按esc退出编辑常用的保存退出命令如下:1、:w(保存编辑的文件内容,但不退出vim编辑器)2、:w!(强制写文件,即覆盖原有的文件,如果原有文件的访问权限不允许写入文件,例如,原有的文件为只读文件,则可使用这个命令强制写入)3、:q(未做任何编辑,无需保存文件,直接退出vim编辑器)4、:q!(强制退出vim编辑器,适用于已写入内容但不需要保存放弃该内容时)5、:wq(保存编辑的文件并退出vim编辑器

  • i386和i686的区别[通俗易懂]

    i386和i686的区别[通俗易懂]i386和i686现在所有的intel32位体系(包括AMD等兼容CPU)都叫i386体系,包括P4。、i686仍然属于i386体系,不过对CPU(相对于386)的特性作了指令优化。GNU/Linux分为alpha、PowerPC、Sun等各个不同版本,所有从Intel386-P4都用i386版本,但i386版本中有几个内核(i486,i486,i586,i686),安装时安装程序检测到

  • Springboot+netty实现Web聊天室

    Springboot+netty实现Web聊天室Web聊天室的实现一、项目的创建一、项目的创建新建Spring项目:选择JDK版本:选择SpringWeb:项目名称和位置的设置:

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号