logistic回归详解(二):损失函数(cost function)详解[通俗易懂]

logistic回归详解(二):损失函数(cost function)详解[通俗易懂]有监督学习机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。既然是有监督学习,训练集自然可以用如下方式表述:{(x1,y1),(x2,y2),⋯,(xm,ym)}\{(x^1,y^1),(x^2,y^2),\cdots,(x^m,y^m)\}对于这m个训练样本,每个样本本身有n维特征。再加上一个偏置项x0x_0,则每个样本包含n+1维特征

大家好,又见面了,我是你们的朋友全栈君。

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

有监督学习

机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。
既然是有监督学习,训练集自然可以用如下方式表述:
{ ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x m , y m ) } \{(x^1,y^1),(x^2,y^2),\cdots,(x^m,y^m)\} {
(x1,y1),(x2,y2),,(xm,ym)}

对于这m个训练样本,每个样本本身有n维特征。再加上一个偏置项 x 0 x_0 x0, 则每个样本包含n+1维特征:
x = [ x 0 , x 1 , x 2 , ⋯   , x n ] T x = [x_0,x_1,x_2,\cdots,x_n]^T x=[x0,x1,x2,,xn]T
其中 x ∈ R n + 1 x\in R^{n+1} xRn+1, x 0 = 1 x_0=1 x0=1, y ∈ { 0 , 1 } y\in\{0,1\} y{
0,1}

李航博士在统计学习方法一书中给分类问题做了如下定义:
分类是监督学习的一个核心问题,在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分类问题。这时,输入变量X可以是离散的,也可以是连续的。监督学习从数据中学习一个分类模型或分类决策函数,称为分类器(classifier)。分类器对新的输入进行输出的预测(prediction),称为分类(classification).

在logistic回归详解一(http://blog.csdn.net/bitcarmanlee/article/details/51154481)中,我们花了一整篇篇幅阐述了为什么要使用logistic函数: h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1+e^{-\theta^{T}x}} hθ(x)=g(θTx)=1+eθTx1
其中一个重要的原因,就是要将Hypothesis(NG课程里的说法)的输出映射到0与1之间,既:
0 ≤ h θ ( x ) ≤ 1 0\le h_{\theta}(x)\le 1 0hθ(x)1

同样是李航博士统计学习方法一书中,有以下描述:
统计学习方法都是由模型,策略,和算法构成的,即统计学习方法由三要素构成,可以简单表示为:
方 法 = 模 型 + 策 略 + 算 法 方法 = 模型 + 策略 + 算法 =++

对于logistic回归来说,模型自然就是logistic回归,策略最常用的方法是用一个损失函数(loss function)或代价函数(cost function)来度量预测错误程度,算法则是求解过程,后期会详细描述相关的优化算法。

logistic函数求导

KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ g'(z) & = \fra…

此求导公式在后续推导中会使用到

常见的损失函数

机器学习或者统计机器学习常见的损失函数如下:

1.0-1损失函数 (0-1 loss function)
L ( Y , f ( X ) ) = { 1 , Y  ≠  f(X) 0 , Y = f(X) L(Y,f(X))= \begin{cases} 1 , & \text {Y $\neq$ f(X)} \\ 0, & \text{Y = f(X)} \end{cases} L(Y,f(X))={
1,0,= f(X)Y = f(X)

2.平方损失函数(quadratic loss function)
L ( Y , f ( X ) ) = ( Y − f ( x ) ) 2 L(Y,f(X)) = (Y – f(x))^2 L(Y,f(X))=(Yf(x))2

3.绝对值损失函数(absolute loss function)
L ( Y , f ( x ) ) = ∣ Y − f ( X ) ∣ L(Y,f(x)) = |Y – f(X)| L(Y,f(x))=Yf(X)

4.对数损失函数(logarithmic loss function) 或对数似然损失函数(log-likehood loss function)
L ( Y , P ( Y ∣ X ) ) = − l o g P ( Y ∣ X ) L(Y,P(Y|X)) = -logP(Y|X) L(Y,P(YX))=logP(YX)

逻辑回归中,采用的则是对数损失函数。如果损失函数越小,表示模型越好。

说说对数损失函数与平方损失函数

在逻辑回归的推导中国,我们假设样本是服从伯努利分布(0-1分布)的,然后求得满足该分布的似然函数,最终求该似然函数的极大值。整体的思想就是求极大似然函数的思想。而取对数,只是为了方便我们的在求MLE(Maximum Likelihood Estimation)过程中采取的一种数学手段而已。

损失函数详解

根据上面的内容,我们可以得到逻辑回归的对数似然损失函数cost function:
c o s t ( h θ ( x ) , y ) = { − l o g ( h θ ( x ) ) if y=1 − l o g ( 1 − h θ ( x ) ) if y=0 cost(h_{\theta}(x),y) = \begin{cases} -log(h_{\theta}(x)) & \text {if y=1} \\ -log(1-h_{\theta}(x)) & \text{if y=0} \end{cases} cost(hθ(x),y)={
log(hθ(x))log(1hθ(x))if y=1if y=0

稍微解释下这个损失函数,或者说解释下对数似然损失函数:
当y=1时,假定这个样本为正类。如果此时 h θ ( x ) = 1 h_\theta(x)=1 hθ(x)=1,则单对这个样本而言的cost=0,表示这个样本的预测完全准确。那如果所有样本都预测准确,总的cost=0
但是如果此时预测的概率 h θ ( x ) = 0 h_\theta(x)=0 hθ(x)=0,那么 c o s t → ∞ cost\to\infty cost。直观解释的话,由于此时样本为一个正样本,但是预测的结果 P ( y = 1 ∣ x ; θ ) = 0 P(y=1|x;\theta) = 0 P(y=1x;θ)=0, 也就是说预测 y=1的概率为0,那么此时就要对损失函数加一个很大的惩罚项。
当y=0时,推理过程跟上述完全一致,不再累赘。

将以上两个表达式合并为一个,则单个样本的损失函数可以描述为:
c o s t ( h θ ( x ) , y ) = − y i l o g ( h θ ( x ) ) − ( 1 − y i ) l o g ( 1 − h θ ( x ) ) cost(h_{\theta}(x),y) = -y_ilog(h_{\theta}(x)) – (1-y_i)log(1-h_{\theta}(x)) cost(hθ(x),y)=yilog(hθ(x))(1yi)log(1hθ(x))
因为 y i y_i yi 只有两种取值情况,1或0,分别令y=1或y=0,即可得到原来的分段表示式。

全体样本的损失函数可以表示为:
c o s t ( h θ ( x ) , y ) = ∑ i = 1 m − y i l o g ( h θ ( x ) ) − ( 1 − y i ) l o g ( 1 − h θ ( x ) ) cost(h_{\theta}(x),y) = \sum_{i=1}^{m} -y_ilog(h_{\theta}(x)) – (1-y_i)log(1-h_{\theta}(x)) cost(hθ(x),y)=i=1myilog(hθ(x))(1yi)log(1hθ(x))
这就是逻辑回归最终的损失函数表达式

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/131777.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • ZOJ 3794 Greedy Driver spfa

    ZOJ 3794 Greedy Driver spfa

  • set max_containsvalue方法

    set max_containsvalue方法•setMaxResults是用来配合数据库生成sql的,在sql里就控制查询的记录数目。  o=query.setMaxResults(1).uniqueResult(); uniqueResult();hibernate的参考手册,query接口提供了一个更好的方法用来获取实例,当返回的实例明确只有一个或者为null的时候。这个方法是这样用的当你能够肯定你…

  • C++ 引用的本质_c++中引用的作用是什么

    C++ 引用的本质_c++中引用的作用是什么引用是C++引入的重要机制,它使原来在C中必须用指针实现的功能有了另一种实现的选择,在书写形式上更为简洁。那么引用的本质是什么,它与指针又有什么关系呢?

    2022年10月30日
  • Centos7安装Nginx的步骤「建议收藏」

    Centos7安装Nginx的步骤「建议收藏」Centos7安装Nginx准备工作:开始前,请确认gccg++开发类库是否装好安装make:yum-yinstallgccautomakeautoconflibtoolmake安装g++:yuminstallgccgcc-c++下面正式开始:一、选定安装文件目录  可以选择任何目录,演示选择 cd/usr/local/srccd/usr/local/src二、安装PC…

  • matlab强化学习DDPG算法改编/菜鸟理解2——航天器三轴姿态稳定器学习算例「建议收藏」

    matlab强化学习DDPG算法改编/菜鸟理解2——航天器三轴姿态稳定器学习算例「建议收藏」目录写在前面matlab强化学习库简介航天器三轴姿态稳定器介绍算法流程代码/simulink结果展示与分析一些心得写在最后写在前面%写在前面:本人大四狗一名,不是计算机专业,所以这方面比较菜。最近在学习强化学习的一些算法,python更新太快,很多一两年前的学习资料就不太能用了,涉及到版本匹配和语法的更改等一系列问题。2020b的matlab中加入了DDPG\TD3\PPO等算法的强化学习算例和强化学习库,于是想用matlab来做强化学习。由于本人是航空航天工程专业的,又和毕设有点联系,于是想试一下

  • python分类模型_nlp模型评估指标

    python分类模型_nlp模型评估指标不知道你是否已经看完了我之前讲过的有关机器学习的文章,如果没看过也没关系,因为本篇文章介绍的内容适用于所有分类模型(包括神经网络),主要就是介绍分类模型的评估指标。另外,在前面我还会提一下数据不平衡的问题该如何处理。总之本篇文章实用性极强!…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号