pandas用法-全网最详细教程

pandas用法-全网最详细教程一、生成数据表1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:importnumpyasnpimportpandasaspd2、导入CSV或者xlsx文件:df=pd.DataFrame(pd.read_csv(‘name.csv’,header=1))df=pd.DataFrame(pd.read_excel(‘nam…

大家好,又见面了,我是你们的朋友全栈君。

一、生成数据表

各位读者朋友们,由于更新blog不易,如果觉得这篇blog对你有用的话,麻烦关注,点赞,收藏一下哈,十分感谢。

1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:

import numpy as np
import pandas as pd

2、导入CSV或者xlsx文件:

df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))

或者

import pandas as pd
from collections import namedtuple

Item = namedtuple('Item', 'reply pv')
items = []

with codecs.open('reply.pv.07', 'r', 'utf-8') as f: 
    for line in f:
        line_split = line.strip().split('\t')
        items.append(Item(line_split[0].strip(), line_split[1].strip()))

df = pd.DataFrame.from_records(items, columns=['reply', 'pv'])

3、用pandas创建数据表:

df = pd.DataFrame({ 
   "id":[1001,1002,1003,1004,1005,1006], 
 "date":pd.date_range('20130102', periods=6),
  "city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
 "age":[23,44,54,32,34,32],
 "category":['100-A','100-B','110-A','110-C','210-A','130-F'],
  "price":[1200,np.nan,2133,5433,np.nan,4432]},
  columns =['id','date','city','category','age','price'])

二、数据表信息查看

1、维度查看:

df.shape

2、数据表基本信息(维度、列名称、数据格式、所占空间等):

df.info()

3、每一列数据的格式:

df.dtypes

4、某一列格式:

df['B'].dtype

5、空值:

df.isnull()

6、查看某一列空值:

df['B'].isnull()

7、查看某一列的唯一值:

df['B'].unique()

8、查看数据表的值:

df.values 

9、查看列名称:

df.columns

10、查看前5行数据、后5行数据:

df.head() #默认前5行数据
df.tail()    #默认后5行数据

三、数据表清洗

1、用数字0填充空值:

df.fillna(value=0)

2、使用列prince的均值对NA进行填充:

df['prince'].fillna(df['prince'].mean())

3、清楚city字段的字符空格:

df['city']=df['city'].map(str.strip)

4、大小写转换:

df['city']=df['city'].str.lower()

5、更改数据格式:

df['price'].astype('int')       

6、更改列名称:

df.rename(columns={ 
   'category': 'category-size'}) 

7、删除后出现的重复值:

df['city'].drop_duplicates()

8 、删除先出现的重复值:

df['city'].drop_duplicates(keep='last')

9、数据替换:

df['city'].replace('sh', 'shanghai')

四、数据预处理

df1=pd.DataFrame({ 
   "id":[1001,1002,1003,1004,1005,1006,1007,1008], 
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})

1、数据表合并

1.1 merge

df_inner=pd.merge(df,df1,how='inner')  # 匹配合并,交集
df_left=pd.merge(df,df1,how='left')        #
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer')  #并集

1.2 append

result = df1.append(df2)

这里写图片描述

1.3 join

result = left.join(right, on='key')

这里写图片描述

1.4 concat

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
	          keys=None, levels=None, names=None, verify_integrity=False,
	          copy=True)
  • objs︰ 一个序列或系列、 综合或面板对象的映射。如果字典中传递,将作为键参数,使用排序的键,除非它传递,在这种情况下的值将会选择
    (见下文)。任何没有任何反对将默默地被丢弃,除非他们都没有在这种情况下将引发 ValueError。
  • axis: {0,1,…},默认值为 0。要连接沿轴。
  • join: {‘内部’、 ‘外’},默认 ‘外’。如何处理其他 axis(es) 上的索引。联盟内、 外的交叉口。
  • ignore_index︰ 布尔值、 默认 False。如果为 True,则不要串联轴上使用的索引值。由此产生的轴将标记
    0,…,n-1。这是有用的如果你串联串联轴没有有意义的索引信息的对象。请注意在联接中仍然受到尊重的其他轴上的索引值。
  • join_axes︰ 索引对象的列表。具体的指标,用于其他 n-1 轴而不是执行内部/外部设置逻辑。 keys︰
    序列,默认为无。构建分层索引使用通过的键作为最外面的级别。如果多个级别获得通过,应包含元组。
  • levels︰ 列表的序列,默认为无。具体水平 (唯一值) 用于构建多重。否则,他们将推断钥匙。
  • names︰ 列表中,默认为无。由此产生的分层索引中的级的名称。
  • verify_integrity︰ 布尔值、 默认 False。检查是否新的串联的轴包含重复项。这可以是相对于实际数据串联非常昂贵。
  • 副本︰ 布尔值、 默认 True。如果为 False,请不要,不必要地复制数据。
例子:1.frames = [df1, df2, df3]
          2.result = pd.concat(frames)

这里写图片描述

2、设置索引列

df_inner.set_index('id')

3、按照特定列的值排序:

df_inner.sort_values(by=['age'])

4、按照索引列排序:

df_inner.sort_index()

5、如果prince列的值>3000,group列显示high,否则显示low:

df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')

6、对复合多个条件的数据进行分组标记

df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1

7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size

pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size']))

8、将完成分裂后的数据表和原df_inner数据表进行匹配

df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)

五、数据提取

主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。

1、按索引提取单行的数值

df_inner.loc[3]

2、按索引提取区域行数值

df_inner.iloc[0:5]

3、重设索引

df_inner.reset_index()

4、设置日期为索引

df_inner=df_inner.set_index('date') 

5、提取4日之前的所有数据

df_inner[:'2013-01-04']

6、使用iloc按位置区域提取数据

df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。

7、适应iloc按位置单独提起数据

df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列

8、使用ix按索引标签和位置混合提取数据

df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据

9、判断city列的值是否为北京

df_inner['city'].isin(['beijing'])

10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来

df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])] 

11、提取前三个字符,并生成数据表

pd.DataFrame(category.str[:3])

六、数据筛选

使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。

1、使用“与”进行筛选

df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]

2、使用“或”进行筛选

df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age']) 

3、使用“非”条件进行筛选

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']) 

4、对筛选后的数据按city列进行计数

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()

5、使用query函数进行筛选

df_inner.query('city == ["beijing", "shanghai"]')

6、对筛选后的结果按prince进行求和

df_inner.query('city == ["beijing", "shanghai"]').price.sum()

七、数据汇总

主要函数是groupby和pivote_table

1、对所有的列进行计数汇总

df_inner.groupby('city').count()

2、按城市对id字段进行计数

df_inner.groupby('city')['id'].count()

3、对两个字段进行汇总计数

df_inner.groupby(['city','size'])['id'].count()

4、对city字段进行汇总,并分别计算prince的合计和均值

df_inner.groupby('city')['price'].agg([len,np.sum, np.mean]) 

八、数据统计

数据采样,计算标准差,协方差和相关系数

1、简单的数据采样

df_inner.sample(n=3) 

2、手动设置采样权重

weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights) 

3、采样后不放回

df_inner.sample(n=6, replace=False) 

4、采样后放回

df_inner.sample(n=6, replace=True)

5、 数据表描述性统计

df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置

6、计算列的标准差

df_inner['price'].std()

7、计算两个字段间的协方差

df_inner['price'].cov(df_inner['m-point']) 

8、数据表中所有字段间的协方差

df_inner.cov()

9、两个字段的相关性分析

df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关

10、数据表的相关性分析

df_inner.corr()

九、数据输出

分析后的数据可以输出为xlsx格式和csv格式

1、写入Excel

df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc') 

2、写入到CSV

df_inner.to_csv('excel_to_python.csv') 
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/131389.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • MBUS协议_协议解析

    MBUS协议_协议解析来自于我的163博客,一篇好好的技术文章,在163上居然提示不能显示,我2014年6月25日就翻译出来了,当时很多其他博客都是直接拷贝我的文章都能在网上发布。看了许多关于MBus协议的资料,感觉说的不具体、不完整、也不系统,本人准备结合一个具体的产品实现,从理论和实现上对MBus协议做一个详细的论述,如有不当之处,欢迎讨论。1介绍MBus(MeterB…

    2022年10月16日
  • 在CentOS上安装phpMyAdmin的教程

    在CentOS上安装phpMyAdmin的教程前提在CentOS上安装phpMyAdmin,你第一步需要架设一台Web服务器(如Apache或nginx),安装好MySQL/MariaDB数据库和PHP。根据你的偏好和需求,你可以从LAMP和LEMP中选择一种安装。另一个要求是允许在你的CentOS上安装EPEL库。如果你还没设置过请猛戳这里。在CentOS6或7上安装phpMyAdmin一旦你设置了EPEL库,你就能轻松地用以下命令安装ph

  • shift work什么意思_shift delete什么意思

    shift work什么意思_shift delete什么意思shift后门之管理员的用处『罗斌原创』shift后门,网络/系统管理员如果想用的话,那还是可以的,为什么要用它呢,第一,公司大部分的电脑都没有光驱,有的甚至不支持从U盘启动,当一个员工走了之后,而他的电脑又设置了密码,无从下手激活成功教程密码,除非把它的电脑拆了,把硬盘挂在其他电脑上去激活成功教程。或者重装系统!这样是不是非常麻烦呢?第…

  • MySQL 使用方法简单教程

    MySQL 使用方法简单教程MySQL使用方法简单教程

  • vue中时间戳转日期格式化的方法(一看就会)「建议收藏」

    vue中时间戳转日期格式化的方法(一看就会)「建议收藏」一.利用vue的filter过滤器这里用到的是局部过滤器首先需要安装moment时间插件moment文档npminstallmoment然后在需要过滤的文件中引入moment时间插件importmomentfrom’moment’;代码如下<template><div><divclass=”admin-apply-time”>{{content.create_time|timeFilter}}</div><

  • javascript操作html元素CSS属性

    javascript操作html元素CSS属性

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号