最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」  子串:小于等于原字符串长度由原字符串中任意个连续字符组成的子序列  回文:关于中间字符对称的文法,即“aba”(单核)、“cabbac”(双核)等  最长回文子串:1.寻找回文子串;2.该子串是回文子串中长度最长的。一、O(n^3)时间复杂度方法——暴力求解1.思想:    1)从最长的子串开始,遍历所有该原字符串的子串;    2)每找出一个字符串,就判断该字符串是否为回文;  …

大家好,又见面了,我是你们的朋友全栈君。

    子串:小于等于原字符串长度由原字符串中任意个连续字符组成的子序列

    回文:关于中间字符对称的文法,即“aba”(单核)、“cabbac”(双核)等

    最长回文子串:1.寻找回文子串;2.该子串是回文子串中长度最长的。

一、O(n^3)时间复杂度方法——暴力求解

1.思想:

    1)从最长的子串开始,遍历所有该原字符串的子串;

    2)每找出一个字符串,就判断该字符串是否为回文;

    3)子串为回文时,则找到了最长的回文子串,因此结束;反之,则继续遍历。


2.时间复杂度解释:

    遍历字符串子串:嵌套一个循环、O(n^2);   

    判断是否为回文:再次嵌套一个循环、O(n^3)。


3.java代码详解:

    public static String longestPalindrome(String s) {

        if(s.length() <= 1)
            return s;
        for(int i = s.length();i > 0; i–) {//子串长度
            for (int j = 0; j <= s.length() – i; j++) {

                String sub = s.substring(j , i + j);//子串位置
                int count = 0;//计数,用来判断是否对称
                for (int k = 0; k < sub.length() / 2; k++) {//左右对称判断
                    if (sub.charAt(k) == sub.charAt(sub.length() – k – 1))
                        count++;
                }
                if (count == sub.length() / 2)
                    return sub;
            }
        }
        return “”;//表示字符串中无回文子串

    }


二、O(n^2)时间复杂度方法——从中心向外扩散

1.思想:

     1)将子串分为单核和双核的情况,单核即指子串长度为奇数,双核则为偶数;

    2)遍历每个除最后一个位置的字符index(字符位置),单核:初始low = 初始high = index,low和high均不超过原字符串的下限和上限;判断low和high处的字符是否相等,相等则low++、high++(双核:初始high = 初始low+1 = index + 1);

    3)每次low与high处的字符相等时,都将当前最长的回文子串长度与high-low+1比较。后者大时,将最长的回文子串改为low与high之间的;

    4)重复执行2)、3),直至high-low+1 等于原字符串长度或者遍历到最后一个字符,取当前截取到的回文子串,该子串即为最长的回文子串。


2.时间复杂度解释:

   遍历字符:一层循环、O(n-1);

   找以当前字符为中心的最长回文子串:嵌套两个独立循环、O(2n*(n-1)) = O(n^2)。


3.java代码详解:

private static int maxLen = 0;

private static String sub = “”;

public static String longestPalindrome(String s) {

        if(s.length() <= 1)
            return s;

        for(int i = 0;i < s.length()-1;i++){

            findLongestPalindrome(s,i,i);//单核回文

            findLongestPalindrome(s,i,i+1);//双核回文
        }
        return sub;
    }
    public static  void findLongestPalindrome(String s,int low,int high){

        while (low >= 0 && high <= s.length()-1){

            if(s.charAt(low) == s.charAt(high)){

                if(high – low + 1 > maxLen){

                    maxLen = high – low + 1;
                    sub = s.substring(low , high+1);
                }
                low –;//向两边扩散找当前字符为中心的最大回文子串
                high ++;
            }
            else
                break;
        }

    }


三、O(n)时间复杂度方法——Manacher算法

1.思想:

    1)将原字符串S的每个字符间都插入一个永远不会在S中出现的字符(本例中用“#”表示),在S的首尾也插入该字符,使得到的新字符串S_new长度为2*S.length()+1,保证Len的长度为奇数(下例中空格不表示字符,仅美观作用);

        例:S:       a  a  b  a  b  b  a

        S_new:        #  a  #  a  #  b  #  a  #  b  #  b  #  a  #

    2)根据S_new求出以每个字符为中心的最长回文子串的最右端字符距离该字符的距离,存入Len数组中,即S_new[i]—S_new[r]为S_new[i]的最长回文子串的右段(S_new[2i-r]—S_new[r]为以S_new[i]为中心的最长回文子串),Len[i] = r – i + 1;

        S_new:        #  a  #  a  #  b  #  a  #  b  #  b  #  a  #

        Len:            1  2  3  2  1   4  1  4  1  2  5   2  1  2  1

        Len数组性质:Len[i] – 1即为以Len[i]为中心的最长回文子串在S中的长度。在S_new中,以S_new[i]为中心的最长回文子串长度为2Len[i] – 1,由于在S_new中是在每个字符两侧都有新字符“#”,观察可知“#”的数量一定是比原字符多1的,即有Len[i]个,因此真实的回文子串长度为Len[i] – 1,最长回文子串长度为Math.max(Len) – 1。

    3)Len数组求解(线性复杂度(O(n))):

       a.遍历S_new数组,i为当前遍历到的位置,即求解以S_new[i]为中心的最长回文子串的Len[i];

       b.设置两个参数:sub_midd = Len.indexOf(Math.max(Len)表示在i之前所得到的Len数组中的最大值所在位置、sub_side = sub_midd + Len[sub_midd] – 1表示以sub_midd为中心的最长回文子串的最右端在S_new中的位置。起始sub_midd和sub_side设为0,从S_new中的第一个字母开始计算,每次计算后都需要更新sub_midd和sub_side;

      c.当i < sub_side时,取i关于sub_midd的对称点j(j = 2sub_midd – i,由于i <= sub_side,因此2sub_midd – sub_side <= j <= sub_midd);当Len[j] < sub_side – i时,即以S_new[j]为中心的最长回文子串是在以S_new[sub_midd]为中心的最长回文子串的内部,再由于i、j关于sub_midd对称,可知Len[i] = Len[j];

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」

    当Len[j] >= sub.side – i时说明以S_new[i]为中心的回文串可能延伸到sub_side之外,而大于sub_side的部分还没有进行匹配,所以要从sub_side+1位置开始进行匹配,直到匹配失败以后,从而更新sub_side和对应的sub_midd以及Len[i];

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」

        d.当i > sub_side时,则说明以S_new[i]为中心的最长回文子串还没开始匹配寻找,因此需要一个一个进行匹配寻找,结束后更新sub_side和对应的sub_midd以及Len[i]。

最长回文子串(Longest Palindromic Substring)——三种时间复杂度的解法「建议收藏」


2.时间复杂度解释:

        算法只有遇到还没匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,因此大大的减少了重复匹配的步骤,对于S_new中的每个字符只进行一次匹配。所以该算法的时间复杂度为O(2n+1)—>O(n)(n为原字符串的长度),所以其时间复杂度依旧是线性的。


3.java代码详解:

public String longestPalindrome(String s) {

        List<Character> s_new = new ArrayList<>();
        for(int i = 0;i < s.length();i++){

            s_new.add(‘#’);
            s_new.add(s.charAt(i));
        }
        s_new.add(‘#’);
        List<Integer> Len = new ArrayList<>();
        String sub = “”;//最长回文子串
        int sub_midd = 0;//表示在i之前所得到的Len数组中的最大值所在位置
        int sub_side = 0;//表示以sub_midd为中心的最长回文子串的最右端在S_new中的位置
        Len.add(1);
        for(int i = 1;i < s_new.size();i++){

            if(i < sub_side) {//i < sub_side时,在Len[j]和sub_side – i中取最小值,省去了j的判断
                int j = 2 * sub_midd – i;
                if(j >= 2 * sub_midd – sub_side &&  Len.get(j) <= sub_side – i){

                    Len.add(Len.get(j));
                }
                else
                    Len.add(sub_side – i + 1);
            }
            else//i >= sub_side时,从头开始匹配
                Len.add(1);
            while( (i – Len.get(i) >= 0 && i + Len.get(i) < s_new.size()) && (s_new.get(i – Len.get(i)) == s_new.get(i + Len.get(i))))
                Len.set(i,Len.get(i) + 1);//s_new[i]两端开始扩展匹配,直到匹配失败时停止
            if(Len.get(i) >= Len.get(sub_midd)){//匹配的新回文子串长度大于原有的长度
                sub_side = Len.get(i) + i – 1;
                sub_midd = i;
            }
        }
        sub = s.substring((2*sub_midd – sub_side)/2,sub_side /2);//在s中找到最长回文子串的位置
        return sub;

    }

写这篇博客也是为了加深印象,希望可以通过这种方式来提高学习效率。共勉!





    

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/130512.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • js高级技巧_JavaScript高级程序

    js高级技巧_JavaScript高级程序下述内容主要讲述了《JavaScript高级程序设计(第3版)》第22章关于“高级技巧”。一、高级函数函数是第一等公民,所有函数都是对象。1.安全的类型检测JavaScript内置的类型检测机制并非完全可靠。varisArray=valueinstanceofArray;以上代码要返回true,value必须是一个数组,而且还必须与Array构造函数在同个全局作用域中。(Array是w

  • mysql、Java、mabatis的字段映射

    mysql、Java、mabatis的字段映射mysql、Java、mabatis的字段映射

  • Java 工厂模式

    Java 工厂模式简单工厂模式详解简单工厂模式用来定义一个工厂类,它可以根据参数的不同返回不同类的实例,被创建的实例通常都具有共同的父类。因为在简单工厂模式中用于创建实例的方法是静态方法,因此简单工厂模式又被称为静态工厂方法模式,它属于类创建型模式。简单工厂模式的要点在于,当我们需要什么,只需要传入一个正确的参数,就可以获取我们所需要的对象,而无需知道其创建细节。简单工厂模式结构比较简单,其核心是工厂类的设计,其机构如图所示:在简单工厂模式结构图中包含如下几个角色。Factory(工厂角色):工厂角色即工厂类,它

  • 防止Lambda的各种坑爹(二)

    防止Lambda的各种坑爹(二)

  • LayoutParams理解和使用「建议收藏」

    LayoutParams理解和使用「建议收藏」LayoutParams理解和使用

  • 电商网站详情页系统架构图_连连跨境电商

    电商网站详情页系统架构图_连连跨境电商电商网站的商品详情页系统架构小型电商网站的商品详情页系统架构小型电商网站的页面展示采用页面全量静态化的思想。数据库中存放了所有的商品信息,页面静态化系统,将数据填充进静态模板中,形成静态化页面,推入Nginx服务器。用户浏览网站页面时,取用一个已经静态化好的html页面,直接返回回去,不涉及任何的业务逻辑处理。下面是页面模板的简单Demo。<html>&…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号