Pytorch的BatchNorm层使用中容易出现的问题

Pytorch的BatchNorm层使用中容易出现的问题前言:本文主要介绍在pytorch中的BatchNormalization的使用以及在其中容易出现的各种小问题,本来此文应该归属于[1]中的,但是考虑到此文的篇幅可能会比较大,因此独立成篇,希望能够帮助到各位读者。如有谬误,请联系指出,如需转载,请注明出处,谢谢。∇\nabla∇联系方式:e-mail:FesianXu@163.comQQ:973926198github:htt…

大家好,又见面了,我是你们的朋友全栈君。

前言

本文主要介绍在pytorch中的Batch Normalization的使用以及在其中容易出现的各种小问题,本来此文应该归属于[1]中的,但是考虑到此文的篇幅可能会比较大,因此独立成篇,希望能够帮助到各位读者。如有谬误,请联系指出,如需转载,请注明出处,谢谢。

∇ \nabla 联系方式:

e-mail: FesianXu@gmail.com

QQ: 973926198

github: https://github.com/FesianXu

知乎专栏: 计算机视觉/计算机图形理论与应用

微信公众号
qrcode


Batch Normalization,批规范化

Batch Normalization(简称为BN)[2],中文翻译成批规范化,是在深度学习中普遍使用的一种技术,通常用于解决多层神经网络中间层的协方差偏移(Internal Covariate Shift)问题,类似于网络输入进行零均值化和方差归一化的操作,不过是在中间层的输入中操作而已,具体原理不累述了,见[2-4]的描述即可。

在BN操作中,最重要的无非是这四个式子:
I n p u t : B = { x 1 , ⋯   , x m } , 为 m 个 样 本 组 成 的 一 个 b a t c h 数 据 。 O u t p u t : 需 要 学 习 到 的 是 γ 和 β , 在 框 架 中 一 般 表 述 成 w e i g h t 和 b i a s 。 更 新 过 程 : μ B ← 1 m ∑ i = 1 m x i      / / 得 到 b a t c h 中 的 统 计 特 性 之 一 : 均 值 σ B 2 ← 1 m ∑ i = 1 m ( x i − μ B ) 2      / / 得 到 b a t c h 中 的 另 一 个 统 计 特 性 : 方 差 x ^ i ← x i − μ B σ B 2 + ϵ      / / 规 范 化 , 其 中 ϵ 是 一 个 很 小 的 数 , 防 止 计 算 出 现 数 值 问 题 。 y i ← γ x ^ i + β ≡ B N γ , β ( x i )      / / 这 一 步 是 输 出 尺 寸 伸 缩 和 偏 移 。 \begin{aligned} \mathbf{Input}: & \mathcal{B}=\{x_1,\cdots,x_m\},为m个样本组成的一个batch数据 。\\ \mathbf{Output}: & 需要学习到的是 \gamma和\beta,在框架中一般表述成\mathrm{weight}和\mathrm{bias}。\\ 更新过程: & \\ \mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \ \ \ \ // 得到batch中的统计特性之一:均值 \\ \sigma_{\mathcal{B}}^2 &\leftarrow \frac{1}{m} \sum_{i=1}^m (x_i – \mu_{\mathcal{B}})^2 \ \ \ \ // 得到batch中的另一个统计特性:方差 \\ \hat{x}_i & \leftarrow \dfrac{x_i-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2+\epsilon}} \ \ \ \ \\ &// 规范化,其中\epsilon是一个很小的数,防止计算出现数值问题。\\ y_i &\leftarrow \gamma \hat{x}_i+\beta \equiv \mathrm{BN}_{\gamma, \beta}(x_i) \ \ \ \ //这一步是输出尺寸伸缩和偏移。 \end{aligned} Input:Output::μBσB2x^iyiB={
x1,,xm}mbatch
γβweightbiasm1i=1mxi    //batchm1i=1m(xiμB)2    //batchσB2+ϵ
xiμB
    
//ϵγx^i+βBNγ,β(xi)    //

注意到这里的最后一步也称之为仿射(affine),引入这一步的目的主要是设计一个通道,使得输出output至少能够回到输入input的状态(当 γ = 1 , β = 0 \gamma=1,\beta=0 γ=1,β=0时)使得BN的引入至少不至于降低模型的表现,这是深度网络设计的一个套路。
整个过程见流程图,BN在输入后插入,BN的输出作为规范后的结果输入的后层网络中。

:root{--mermaid-font-family:"trebuchet ms", verdana, arial;}

forward

backward

forward

backward

input batch

Batch_Norm

Output batch

好了,这里我们记住了,在BN中,一共有这四个参数我们要考虑的:

  • γ , β \gamma, \beta γ,β:分别是仿射中的 w e i g h t \mathrm{weight} weight b i a s \mathrm{bias} bias,在pytorch中用weightbias表示。
  • μ B \mu_{\mathcal{B}} μB σ B 2 \sigma_{\mathcal{B}}^2 σB2:和上面的参数不同,这两个是根据输入的batch的统计特性计算的,严格来说不算是“学习”到的参数,不过对于整个计算是很重要的。在pytorch中,这两个统计参数,用running_meanrunning_var表示[5],这里的running指的就是当前的统计参数不一定只是由当前输入的batch决定,还可能和历史输入的batch有关,详情见以下的讨论,特别是参数momentum那部分。

Update 2020/3/16:
因为BN层的考核,在工作面试中实在是太常见了,在本文顺带补充下BN层的参数的具体shape大小。
以图片输入作为例子,在pytorch中即是nn.BatchNorm2d(),我们实际中的BN层一般是对于通道进行的,举个例子而言,我们现在的输入特征(可以视为之前讨论的batch中的其中一个样本的shape)为 x ∈ R C × W × H \mathbf{x} \in \mathbb{R}^{C \times W \times H} xRC×W×H(其中C是通道数,W是width,H是height),那么我们的 μ B ∈ R C \mu_{\mathcal{B}} \in \mathbb{R}^{C} μBRC,而方差 σ B 2 ∈ R C \sigma^{2}_{\mathcal{B}} \in \mathbb{R}^C σB2RC。而仿射中 w e i g h t , γ ∈ R C \mathrm{weight}, \gamma \in \mathbb{R}^{C} weight,γRC以及 b i a s , β ∈ R C \mathrm{bias}, \beta \in \mathbb{R}^{C} bias,βRC。我们会发现,这些参数,无论是学习参数还是统计参数都会通道数有关,其实在pytorch中,通道数的另一个称呼是num_features,也即是特征数量,因为不同通道的特征信息通常很不相同,因此需要隔离开通道进行处理。

有些朋友可能会认为这里的weight应该是一个张量,而不应该是一个矢量,其实不是的,这里的weight其实应该看成是 对输入特征图的每个通道得到的归一化后的 x ^ \hat{\mathbf{x}} x^进行尺度放缩的结果,因此对于一个通道数为 C C C的输入特征图,那么每个通道都需要一个尺度放缩因子,同理,bias也是对于每个通道而言的。这里切勿认为 y i ← γ x ^ i + β y_i \leftarrow \gamma \hat{x}_i+\beta yiγx^i+β这一步是一个全连接层,他其实只是一个尺度放缩而已。关于这些参数的形状,其实可以直接从pytorch源代码看出,这里截取了_NormBase层的部分初始代码,便可一见端倪。

class _NormBase(Module):
    """Common base of _InstanceNorm and _BatchNorm"""
    _version = 2
    __constants__ = ['track_running_stats', 'momentum', 'eps',
                     'num_features', 'affine']

    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
                 track_running_stats=True):
        super(_NormBase, self).__init__()
        self.num_features = num_features
        self.eps = eps
        self.momentum = momentum
        self.affine = affine
        self.track_running_stats = track_running_stats
        if self.affine:
            self.weight = Parameter(torch.Tensor(num_features))
            self.bias = Parameter(torch.Tensor(num_features))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)
        if self.track_running_stats:
            self.register_buffer('running_mean', torch.zeros(num_features))
            self.register_buffer('running_var', torch.ones(num_features))
            self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
        else:
            self.register_parameter('running_mean', None)
            self.register_parameter('running_var', None)
            self.register_parameter('num_batches_tracked', None)
        self.reset_parameters()

在Pytorch中使用

Pytorch中的BatchNorm的API主要有:

torch.nn.BatchNorm1d(num_features, 
                     eps=1e-05, 
                     momentum=0.1, 
                     affine=True, 
                     track_running_stats=True)

一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层。通常用model.train()指定当前模型model为训练状态,model.eval()指定当前模型为测试状态。
同时,BN的API中有几个参数需要比较关心的,一个是affine指定是否需要仿射,还有个是track_running_stats指定是否跟踪当前batch的统计特性。容易出现问题也正好是这三个参数:trainningaffinetrack_running_stats

  • 其中的affine指定是否需要仿射,也就是是否需要上面算式的第四个,如果affine=False,则 γ = 1 , β = 0 \gamma=1,\beta=0 γ=1,β=0,并且不能学习被更新。一般都会设置成affine=True[10]
  • trainningtrack_running_statstrack_running_stats=True表示跟踪整个训练过程中的batch的统计特性,得到方差和均值,而不只是仅仅依赖与当前输入的batch的统计特性。相反的,如果track_running_stats=False那么就只是计算当前输入的batch的统计特性中的均值和方差了。当在推理阶段的时候,如果track_running_stats=False,此时如果batch_size比较小,那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果。

一般来说,trainningtrack_running_stats有四种组合[7]

  1. trainning=True, track_running_stats=True。这个是期望中的训练阶段的设置,此时BN将会跟踪整个训练过程中batch的统计特性。
  2. trainning=True, track_running_stats=False。此时BN只会计算当前输入的训练batch的统计特性,可能没法很好地描述全局的数据统计特性。
  3. trainning=False, track_running_stats=True。这个是期望中的测试阶段的设置,此时BN会用之前训练好的模型中的(假设已经保存下了)running_meanrunning_var并且不会对其进行更新。一般来说,只需要设置model.eval()其中model中含有BN层,即可实现这个功能。[6,8]
  4. trainning=False, track_running_stats=False 效果同(2),只不过是位于测试状态,这个一般不采用,这个只是用测试输入的batch的统计特性,容易造成统计特性的偏移,导致糟糕效果。

同时,我们要注意到,BN层中的running_meanrunning_var的更新是在forward()操作中进行的,而不是optimizer.step()中进行的,因此如果处于训练状态,就算你不进行手动step(),BN的统计特性也会变化的。如

model.train() # 处于训练状态

for data, label in self.dataloader:
	pred = model(data)  
	# 在这里就会更新model中的BN的统计特性参数,running_mean, running_var
	loss = self.loss(pred, label)
	# 就算不要下列三行代码,BN的统计特性参数也会变化
	opt.zero_grad()
	loss.backward()
	opt.step()

这个时候要将model.eval()转到测试阶段,才能固定住running_meanrunning_var。有时候如果是先预训练模型然后加载模型,重新跑测试的时候结果不同,有一点性能上的损失,这个时候十有八九是trainningtrack_running_stats设置的不对,这里需要多注意。 [8]

假设一个场景,如下图所示:

:root{--mermaid-font-family:"trebuchet ms", verdana, arial;}

input

model_A

model_B

output

此时为了收敛容易控制,先预训练好模型model_A,并且model_A内含有若干BN层,后续需要将model_A作为一个inference推理模型和model_B联合训练,此时就希望model_A中的BN的统计特性值running_meanrunning_var不会乱变化,因此就必须将model_A.eval()设置到测试模式,否则在trainning模式下,就算是不去更新该模型的参数,其BN都会改变的,这个将会导致和预期不同的结果。

Update 2020/3/17:
评论区的Oshrin朋友提出问题

作者您好,写的很好,但是是否存在问题。即使将track_running_stats设置为False,如果momentum不为None的话,还是会用滑动平均来计算running_mean和running_var的,而非是仅仅使用本batch的数据情况。而且关于冻结bn层,有一些更好的方法。

这里的momentum的作用,按照文档,这个参数是在对统计参数进行更新过程中,进行指数平滑使用的,比如统计参数的更新策略将会变成:
x ^ n e w = ( 1 − m o m e n t u m ) × x ^ + m o m e n t u m × x t \hat{x}_{\mathrm{new}} = (1-\mathrm{momentum}) \times \hat{x} + \mathrm{momentum} \times x_t x^new=(1momentum)×x^+momentum×xt
其中的更新后的统计参数 x ^ n e w \hat{x}_{\mathrm{new}} x^new,是根据当前观察 x t x_t xt和历史观察 x ^ \hat{x} x^进行加权平均得到的(差分的加权平均相当于历史序列的指数平滑),默认的momentum=0.1。然而跟踪历史信息并且更新的这个行为是基于track_running_statstrue并且training=true的情况同时成立的时候,才会进行的,当在track_running_stats=true, training=false时(在默认的model.eval()情况下,即是之前谈到的四种组合的第三个,既满足这种情况),将不涉及到统计参数的指数滑动更新了。[12,13]

这里引用一个不错的BN层冻结的例子,如:[14]

import torch
import torch.nn as nn
from torch.nn import init
from torchvision import models
from torch.autograd import Variable
from apex.fp16_utils import *

def fix_bn(m):
    classname = m.__class__.__name__
    if classname.find('BatchNorm') != -1:
        m.eval()

model = models.resnet50(pretrained=True)
model.cuda()
model = network(model)
model.train()
model.apply(fix_bn) # fix batchnorm
input = Variable(torch.FloatTensor(8, 3, 224, 224).cuda())
output = model(input)
output_mean = torch.mean(output)
output_mean.backward()

总结来说,在某些情况下,即便整体的模型处于model.train()的状态,但是某些BN层也可能需要按照需求设置为model_bn.eval()的状态。

Update 2020.6.19:
评论区有个同学问了一个问题:

K.G.lee:想问博主,为什么模型测试时的参数为trainning=False, track_running_stats=True啊??测试不是用训练时的滑动平均值吗?为什么track_running_stats=True呢?为啥要跟踪当前batch??

我感觉这个问题问得挺好的,我们需要去翻下源码[15],我们发现我们所有的BatchNorm层都有个共同的父类_BatchNorm,我们最需要关注的是return F.batch_norm()这一段,我们发现,其对training的判断逻辑是

training=self.training or not self.track_running_stats

那么,其实其在eval阶段,这里的track_running_stats并不能设置为False,原因很简单,这样会使得上面谈到的training=True,导致最终的期望程序错误。至于设置了track_running_stats=True是不是会导致在eval阶段跟踪测试集的batch的统计参数呢?我觉得是不会的,我们追踪会发现[16],整个流程的最后一步其实是调用了torch.batch_norm(),其是调用C++的底层函数,其参数列表可和track_running_stats一点关系都没有,只是由training控制,因此当training=False时,其不会跟踪统计参数的,只是会调用训练集训练得到的统计参数。(当然,时间有限,我也没有继续追到C++层次去看源码了)。

class _BatchNorm(_NormBase):

    def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True,
                 track_running_stats=True):
        super(_BatchNorm, self).__init__(
            num_features, eps, momentum, affine, track_running_stats)

    def forward(self, input):
        self._check_input_dim(input)

        # exponential_average_factor is set to self.momentum
        # (when it is available) only so that it gets updated
        # in ONNX graph when this node is exported to ONNX.
        if self.momentum is None:
            exponential_average_factor = 0.0
        else:
            exponential_average_factor = self.momentum

        if self.training and self.track_running_stats:
            # TODO: if statement only here to tell the jit to skip emitting this when it is None
            if self.num_batches_tracked is not None:
                self.num_batches_tracked = self.num_batches_tracked + 1
                if self.momentum is None:  # use cumulative moving average
                    exponential_average_factor = 1.0 / float(self.num_batches_tracked)
                else:  # use exponential moving average
                    exponential_average_factor = self.momentum

        return F.batch_norm(
            input, self.running_mean, self.running_var, self.weight, self.bias,
            self.training or not self.track_running_stats,
            exponential_average_factor, self.eps)
def batch_norm(input, running_mean, running_var, weight=None, bias=None,
               training=False, momentum=0.1, eps=1e-5):
    # type: (Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], bool, float, float) -> Tensor # noqa
    r"""Applies Batch Normalization for each channel across a batch of data. See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`, :class:`~torch.nn.BatchNorm3d` for details. """
    if not torch.jit.is_scripting():
        if type(input) is not Tensor and has_torch_function((input,)):
            return handle_torch_function(
                batch_norm, (input,), input, running_mean, running_var, weight=weight,
                bias=bias, training=training, momentum=momentum, eps=eps)
    if training:
        _verify_batch_size(input.size())

    return torch.batch_norm(
        input, weight, bias, running_mean, running_var,
        training, momentum, eps, torch.backends.cudnn.enabled
    )

Reference

[1]. 用pytorch踩过的坑
[2]. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on International Conference on Machine Learning. JMLR.org, 2015:448-456.
[3]. <深度学习优化策略-1>Batch Normalization(BN)
[4]. 详解深度学习中的Normalization,BN/LN/WN
[5]. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py#L23-L24
[6]. https://discuss.pytorch.org/t/what-is-the-running-mean-of-batchnorm-if-gradients-are-accumulated/18870
[7]. BatchNorm2d增加的参数track_running_stats如何理解?
[8]. Why track_running_stats is not set to False during eval
[9]. How to train with frozen BatchNorm?
[10]. Proper way of fixing batchnorm layers during training
[11]. 大白话《Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift》
[12]. https://discuss.pytorch.org/t/what-does-model-eval-do-for-batchnorm-layer/7146/2
[13]. https://zhuanlan.zhihu.com/p/65439075
[14]. https://github.com/NVIDIA/apex/issues/122
[15]. https://pytorch.org/docs/stable/_modules/torch/nn/modules/batchnorm.html#BatchNorm2d
[16]. https://pytorch.org/docs/stable/_modules/torch/nn/functional.html#batch_norm

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/130509.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • Qt的双缓冲技术(double buffering)

    Qt的双缓冲技术(double buffering)Qt的双缓冲技术(doublebuffering)是Qt绘画机制的一部分,是一种在Qt4中被全面采用的技术。其核心是:把一个窗口部件渲染到一个脱屏pixmap(off-screenpixmap)中,然后再把这个pixmap复制到显示屏幕上。这样做的目的是用于消除屏幕的闪烁并且因而界面会显得更漂亮。Qt4中,Qt会自动处理这些情况,所以在普通的绘画中,我们不必要关注这些内容。QT取消双

  • SQL Server 2008 还原数据库

    SQL Server 2008 还原数据库

  • 物联网的架构_物联网的应用有哪些

    物联网的架构_物联网的应用有哪些物联网是一个层次化的网络,从下往上可分为四层:感知层、网络层、平台层和应用层。在各层之间,信息不是单向传递的,也有交互或控制。在所传递的信息中,主要是物的信息,包括物的识别码、物的静态信息、物的动态信息等。感知层:感知层是物联网的皮肤和五官,可以识别物体,采集信息。数据采集与感知主要用于采集物理世界中发生的物理事件和数据,包括各类物理量、标识、音频、视频数据。物联网的数据采集涉及传感器、…

  • 我是如何将网站全站启用Https的?-记录博客安装配置SSL证书全过程

    我是如何将网站全站启用Https的?-记录博客安装配置SSL证书全过程

    2021年10月14日
  • 图数据的自监督学习介绍

    图数据的自监督学习介绍深度学习在解决许多复杂的机器学习问题方面一直是一个有趣的课题,特别是最近在图数据方面。然而,大多数的解决方案要么是监督或半监督,高度依赖于数据中的标签,导致过拟合和整体鲁棒性较弱。自监督学习(Self-SupervisedLearning,SSL)是一种很有前途的解决方案,它从无标记数据中挖掘有用的信息,使其成为图数据领域中一个非常有趣的选择。为什么自监督学习更适合图形数据?SSL有助于理解图形数据中存在的结构和属性信息,使用标记数据时可能会忽略这些信息对于现实世界的数据,获取带标签的图形数据非常

  • 给一组数据 怎么用matlab花折线图,matlab 画折线图 实例「建议收藏」

    给一组数据 怎么用matlab花折线图,matlab 画折线图 实例「建议收藏」数据:某地区近50年雷暴发生次数(1957~2006雷暴日):画如下的年际变化图。———————————————————————————%将数据载入数组a中a=[…..(省略)];x=1957:2006;x=x’;%ma中放平均值:ma=zeros(50,1)+mean(a);p…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号