java反射之Method的invoke方法实现[通俗易懂]

java反射之Method的invoke方法实现[通俗易懂]在框架中经常会会用到method.invoke()方法,用来执行某个的对象的目标方法。以前写代码用到反射时,总是获取先获取Method,然后传入对应的Class实例对象执行方法。然而前段时间研究invoke方法时,发现invoke方法居然包含多态的特性,这是以前没有考虑过的一个问题。那么Method.invoke()方法的执行过程是怎么实现的?它的多态又是如何实现的呢?本文将从java和JVM…

大家好,又见面了,我是你们的朋友全栈君。

在框架中经常会会用到method.invoke()方法,用来执行某个的对象的目标方法。以前写代码用到反射时,总是获取先获取Method,然后传入对应的Class实例对象执行方法。然而前段时间研究invoke方法时,发现invoke方法居然包含多态的特性,这是以前没有考虑过的一个问题。那么Method.invoke()方法的执行过程是怎么实现的?它的多态又是如何实现的呢?

本文将从java和JVM的源码实现深入探讨invoke方法的实现过程。

首先给出invoke方法多态特性的演示代码:

public class MethodInvoke {

	public static void main(String[] args) throws Exception {
		Method animalMethod = Animal.class.getDeclaredMethod("print");
		Method catMethod = Cat.class.getDeclaredMethod("print");
		
		Animal animal = new Animal();
		Cat cat = new Cat();
		animalMethod.invoke(cat);
		animalMethod.invoke(animal);
		
		catMethod.invoke(cat);
		catMethod.invoke(animal);
	}
	
}

class Animal {
	
	public void print() {
		System.out.println("Animal.print()");
	}
	
}

class Cat extends Animal {
	
	@Override
	public void print() {
		System.out.println("Cat.print()");
	}
	
}

代码中,Cat类覆盖了父类Animal的print()方法, 然后通过反射分别获取print()的Method对象。最后分别用Cat和Animal的实例对象去执行print()方法。其中animalMethod.invoke(animal)和catMethod.invoke(cat),示例对象的真实类型和Method的声明Classs是相同的,按照预期打印结果;animalMethod.invoke(cat)中,由于Cat是Animal的子类,按照多态的特性,子类调用父类的的方法,方法执行时会动态链接到子类的实现方法上。因此,这里会调用Cat.print()方法;而catMethod.invoke(animal)中,传入的参数类型Animal是父类,却期望调用子类Cat的方法,因此这一次会抛出异常。代码打印结果为:

Cat.print()
Animal.print()
Cat.print()
Exception in thread "main" java.lang.IllegalArgumentException: object is not an instance of declaring class
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
	at java.lang.reflect.Method.invoke(Unknown Source)
	at com.wy.invoke.MethodInvoke.main(MethodInvoke.java:17)

接下来,我们来看看invoke()方法的实现过程。

    public Object invoke(Object obj, Object... args) throws IllegalAccessException, IllegalArgumentException, InvocationTargetException
    {
        if (!override) {
            if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
                Class<?> caller = Reflection.getCallerClass(1);

                checkAccess(caller, clazz, obj, modifiers);
            }
        }
        MethodAccessor ma = methodAccessor;             // read volatile
        if (ma == null) {
            ma = acquireMethodAccessor();
        }
        return ma.invoke(obj, args);
    }

invoke()方法中主要分为两部分:访问控制检查和调用MethodAccessor.invoke()实现方法执行。

首先看一下访问控制检查这一块的逻辑。第一眼看到这里的逻辑的时候,很容易搞不清楚是干嘛的。通俗来讲就是通过方法的修饰符(public/protected/private/package),来判断方法的调用者是否可以访问该方法。这是java的基础内容,不过用代码写出来,一下子不容易想到。访问控制检查分为3步:

  1. 检查override,如果override为true,跳过检查;否则继续;
  2. 快速检查,判断该方法的修饰符modifiers是否为public,如果是跳过检查;否则继续;
  3. 详细检查,通过方法的(protected/private/package)修饰符或方法的声明类(例如子类可以访问父类的protected方法)与调用者caller之间的关系,判断caller是否有权限访问该方法。

override属性是Method的父类AccessibleObject中声明的变量,使得程序可以控制是否跳过访问权限的检查。另外,Method的实例对象中,override属性的初始值设置为false。

    public void setAccessible(boolean flag) throws SecurityException {
        SecurityManager sm = System.getSecurityManager();
        if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
        setAccessible0(this, flag);
    }

    private static void setAccessible0(AccessibleObject obj, boolean flag)
        throws SecurityException
    {
        if (obj instanceof Constructor && flag == true) {
            Constructor<?> c = (Constructor<?>)obj;
            if (c.getDeclaringClass() == Class.class) {
                throw new SecurityException("Can not make a java.lang.Class" +
                                            " constructor accessible");
            }
        }
        obj.override = flag;
    }

多说一句,Field同样继承了AccessibleObject,且Field的override也是初始化为false的,也就是说并没有按照变量的修饰符去初始化不同的值。但是我们在调用Field.set(Object obj, Object value)时,如果该Field是private修饰的,会因没有访问权限而抛出异常,因此必须调用setAccessible(true)。此处非常容易理解为因为变量是public的,所以override就被初始化为true。

invoke()方法中,访问控制检查之后,就是通过MethodAccessor.invoke()调用方法。再来看一下代码:

        MethodAccessor ma = methodAccessor;             // read volatile
        if (ma == null) {
            ma = acquireMethodAccessor();
        }
        return ma.invoke(obj, args);

这里的逻辑很简单,首先将变量methodAccessor赋值给ma,在方法栈中保存一个可以直接引用的本地变量,如果methodAccessor不存在,调用acquireMethodAccessor()方法创建一个。

    private volatile MethodAccessor methodAccessor;
    private Method root;
    
    private MethodAccessor acquireMethodAccessor() {
        // First check to see if one has been created yet, and take it
        // if so
        MethodAccessor tmp = null;
        if (root != null) tmp = root.getMethodAccessor();
        if (tmp != null) {
            methodAccessor = tmp;
        } else {
            // Otherwise fabricate one and propagate it up to the root
            tmp = reflectionFactory.newMethodAccessor(this);
            setMethodAccessor(tmp);
        }

        return tmp;
    }

    void setMethodAccessor(MethodAccessor accessor) {
        methodAccessor = accessor;
        // Propagate up
        if (root != null) {
            root.setMethodAccessor(accessor);
        }
    }

    Method copy() {
        Method res = new Method(clazz, name, parameterTypes, returnType,
                                exceptionTypes, modifiers, slot, signature,
                                annotations, parameterAnnotations, annotationDefault);
        res.root = this;
        res.methodAccessor = methodAccessor;
        return res;
    }

综合acquireMethodAccessor(),setMethodAccessor()以及copy()这三个方法,可以看到一个Method实例对象维护了一个root引用。当调用Method.copy()进行方法拷贝时,root指向了被拷贝的对象。那么当一个Method被多次拷贝后,调用一次setMethodAccessor()方法,就会将root引用所指向的Method的methodAccessor变量同样赋值。例如:D -> C -> B -> A,其中X-> Y表示X = Y.copy(), 当C对象调用setMethodAccessor()时,B和A都会传播赋值methodAccessor, 而D的methodAccessor还是null。紧接着,当D需要获取methodAccessor而调用acquireMethodAccessor()时,D获取root的methodAccessor, 那么D将和ABC持有相同的methodAccessor。

虽然Method中,通过维护root引用意图使相同的方法始终保持只有一个methodAccessor实例,但是上述方法仍然无法保证相同的方法只有一个methodAccessor实例。例如通过copy()使ABCD保持关系:D -> C -> B -> A, 当B对象调用setMethodAccessor()时,B和A都会赋值methodAccessor, 而C、D的methodAccessor还是null。这时D调用acquireMethodAccessor()时,D获取root也就是C的methodAccessor,发现为空,然后就新创建了一个。从而出现了相同的方法中出现了两个methodAccessor实例对象的现象。

在Class.getMethod()、Class.getDeclaredMethod()以及Class.getDeclaredMethod(String name, Class<?>… parameterTypes)方法中最终都会调用copy()方法来保障Method使用的安全性。 在比较极端加巧合的情况下,可能会引起类膨胀的问题,这就是接下来要讲到的MethodAccessor的实现机制。

copy

在前面代码中,MethodAccessor的创建是通过反射工厂ReflectionFactory的newMethodAccessor(Method)方法来创建的。

    public MethodAccessor newMethodAccessor(Method method) {
        checkInitted();

        if (noInflation) {
            return new MethodAccessorGenerator().
                generateMethod(method.getDeclaringClass(),
                               method.getName(),
                               method.getParameterTypes(),
                               method.getReturnType(),
                               method.getExceptionTypes(),
                               method.getModifiers());
        } else {
            NativeMethodAccessorImpl acc =
                new NativeMethodAccessorImpl(method);
            DelegatingMethodAccessorImpl res =
                new DelegatingMethodAccessorImpl(acc);
            acc.setParent(res);
            return res;
        }
    }

其中, checkInitted()方法检查从配置项中读取配置并设置noInflation、inflationThreshold的值:

    private static void checkInitted() {
        if (initted) return;
        AccessController.doPrivileged(
            new PrivilegedAction<Void>() {
                public Void run() {

                    if (System.out == null) {
                        // java.lang.System not yet fully initialized
                        return null;
                    }

                    String val = System.getProperty("sun.reflect.noInflation");
                    if (val != null && val.equals("true")) {
                        noInflation = true;
                    }

                    val = System.getProperty("sun.reflect.inflationThreshold");
                    if (val != null) {
                        try {
                            inflationThreshold = Integer.parseInt(val);
                        } catch (NumberFormatException e) {
                            throw (RuntimeException)
                                new RuntimeException("Unable to parse property sun.reflect.inflationThreshold").
                                    initCause(e);
                        }
                    }

                    initted = true;
                    return null;
                }
            });
    }

可以通过启动参数-Dsun.reflect.noInflation=false -Dsun.reflect.inflationThreshold=15来设置:

java反射之Method的invoke方法实现[通俗易懂]

结合字面意思及下面代码理解,这两个配置sun.reflect.noInflation是控制是否立即进行类膨胀,sun.reflect.inflationThreshold是设置类膨胀阈值。

创建MethodAccessor有两种选择,一种是当sun.reflect.noInflation配置项为true时,ReflectionFactory利用MethodAccessor的字节码生成类 MethodAccessorGenerator直接创建一个代理类,通过间接调用原方法完成invoke()任务,具体实现稍后给出。MethodAccessor的另一种实现方式是,创建DelegatingMethodAccessorImpl 委托类,并将执行invoke()方法的具体内容交由NativeMethodAccessorImpl实现,而NativeMethodAccessorImpl最终调用native方法完成invoke()任务。以下是NativeMethodAccessorImpl的invoke()方法实现。

    public Object invoke(Object obj, Object[] args) 
        throws IllegalArgumentException, InvocationTargetException
    {
        if (++numInvocations > ReflectionFactory.inflationThreshold()) {
            MethodAccessorImpl acc = (MethodAccessorImpl)
                new MethodAccessorGenerator().
                    generateMethod(method.getDeclaringClass(),
                                   method.getName(),
                                   method.getParameterTypes(),
                                   method.getReturnType(),
                                   method.getExceptionTypes(),
                                   method.getModifiers());
            parent.setDelegate(acc);
        }

        return invoke0(method, obj, args);
    }

    private static native Object invoke0(Method m, Object obj, Object[] args);

可以看到,当numInvocations数量大于配置项sun.reflect.inflationThreshold即类膨胀阈值时, 使用MethodAccessorGenerator创建一个代理类对象,并且将被委托的NativeMethodAccessorImpl的parent,也就是委托类DelegatingMethodAccessorImpl的委托类设置为这个生成的代理对象。这么说可能有点绕,下面用一幅图表示这个过程。

delegate

总体来说,当调用invoke()时,按照默认配置,Method首先创建一个DelegatingMethodAccessorImpl对象,并设置一个被委托的NativeMethodAccessorImpl对象,那么method.invoke()就被转换成DelegatingMethodAccessorImpl.invoke(),然后又被委托给NativeMethodAccessorImp.invoke()实现。当NativeMethodAccessorImp.invoke()调用次数超过一定热度时(默认15次),被委托方又被转换成代理类来实现。

之前提到过在极端情况下,同一个方法的Method对象存在多个不同拷贝拷贝时,可能存在多个MethodAccessor对象。那么当多次调用后,必然会生成两个重复功能的代理类。当然,一般情况下,生成两个代理类并没有较大的影响。

其中代理类的具体字节码实现过程较为复杂,大体思想是生成一个如下所示的类:

public class GeneratedMethodAccessor1 extends MethodAccessorImpl {

	public GeneratedMethodAccessor1 () {
	    super();
	}
	
	public Object invoke(Object obj, Object[] args)
	        throws IllegalArgumentException, InvocationTargetException 
	{
		if (!(obj instanceof Cat)) {
			throw new ClassCastException();
		}
		if (args != null && args.length != 0) {
			throw new IllegalArgumentException();
		}
		
		try {
			Cat cat = (Cat) obj;
			cat.print();
			return null;
		} catch (Throwable e) {
			throw new InvocationTargetException(e, "invoke error");
		}
	}
	
}

到目前为止,除了在代理的GeneratedMethodAccessor1 类中,方法的执行有多态的特性,而NativeMethodAccessorImp的invoke()实现是在jdk中的完成的。接下来我们将目光移到NativeMethodAccessorImp的native方法invoke0();

openJDK下载地址

首先,在\jdk\src\share\native\sun\reflect路径下找到NativeAccessors.c, 其中有Java_sun_reflect_NativeMethodAccessorImpl _invoke0()方法,根据JNI定义函数名的规则”包名_类名_方法名”,这就是我们要找的native方法实现入口。

JNIEXPORT jobject JNICALL Java_sun_reflect_NativeMethodAccessorImpl_invoke0
(JNIEnv *env, jclass unused, jobject m, jobject obj, jobjectArray args)
{
    return JVM_InvokeMethod(env, m, obj, args);
}

方法调用JVM_InvokeMethod(), 一般以JVM_开头的函数定义在jvm.cpp文件中,不熟悉的话可以通过头文件jvm.h看出来。继续追踪,发现jvm.cpp文件位于spot\src\share\vm\prims文件夹下。

JVM_ENTRY(jobject, JVM_InvokeMethod(JNIEnv *env, jobject method, jobject obj, jobjectArray args0))
  JVMWrapper("JVM_InvokeMethod");
  Handle method_handle;
  if (thread->stack_available((address) &method_handle) >= JVMInvokeMethodSlack) {
    method_handle = Handle(THREAD, JNIHandles::resolve(method));
    Handle receiver(THREAD, JNIHandles::resolve(obj));
    objArrayHandle args(THREAD, objArrayOop(JNIHandles::resolve(args0)));
    oop result = Reflection::invoke_method(method_handle(), receiver, args, CHECK_NULL);
    jobject res = JNIHandles::make_local(env, result);
    if (JvmtiExport::should_post_vm_object_alloc()) {
      oop ret_type = java_lang_reflect_Method::return_type(method_handle());
      assert(ret_type != NULL, "sanity check: ret_type oop must not be NULL!");
      if (java_lang_Class::is_primitive(ret_type)) {
        // Only for primitive type vm allocates memory for java object.
        // See box() method.
        JvmtiExport::post_vm_object_alloc(JavaThread::current(), result);
      }
    }
    return res;
  } else {
    THROW_0(vmSymbols::java_lang_StackOverflowError());
  }
JVM_END

其中oop result = Reflection::invoke_method(method_handle(), receiver, args, CHECK_NULL)是方法的执行过程,在\hotspot\src\share\vm\runtime路径下找到reflection.cpp文件。

oop Reflection::invoke_method(oop method_mirror, Handle receiver, objArrayHandle args, TRAPS) {
oop mirror             = java_lang_reflect_Method::clazz(method_mirror);
int slot               = java_lang_reflect_Method::slot(method_mirror);
bool override          = java_lang_reflect_Method::override(method_mirror) != 0;
objArrayHandle ptypes(THREAD, objArrayOop(java_lang_reflect_Method::parameter_types(method_mirror)));
oop return_type_mirror = java_lang_reflect_Method::return_type(method_mirror);
BasicType rtype;
if (java_lang_Class::is_primitive(return_type_mirror)) {
rtype = basic_type_mirror_to_basic_type(return_type_mirror, CHECK_NULL);
} else {
rtype = T_OBJECT;
}
instanceKlassHandle klass(THREAD, java_lang_Class::as_Klass(mirror));
Method* m = klass->method_with_idnum(slot);
if (m == NULL) {
THROW_MSG_0(vmSymbols::java_lang_InternalError(), "invoke");
}
methodHandle method(THREAD, m);
return invoke(klass, method, receiver, override, ptypes, rtype, args, true, THREAD);
}
oop Reflection::invoke(instanceKlassHandle klass, methodHandle reflected_method,
Handle receiver, bool override, objArrayHandle ptypes,
BasicType rtype, objArrayHandle args, bool is_method_invoke, TRAPS) {
ResourceMark rm(THREAD);
methodHandle method;      // actual method to invoke
KlassHandle target_klass; // target klass, receiver's klass for non-static
// Ensure klass is initialized
klass->initialize(CHECK_NULL);
bool is_static = reflected_method->is_static();
if (is_static) {
// ignore receiver argument
method = reflected_method;
target_klass = klass;
} else {
// check for null receiver
if (receiver.is_null()) {
THROW_0(vmSymbols::java_lang_NullPointerException());
}
// Check class of receiver against class declaring method
if (!receiver->is_a(klass())) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "object is not an instance of declaring class");
}
// target klass is receiver's klass
target_klass = KlassHandle(THREAD, receiver->klass());
// no need to resolve if method is private or <init>
if (reflected_method->is_private() || reflected_method->name() == vmSymbols::object_initializer_name()) {
method = reflected_method;
} else {
// resolve based on the receiver
if (reflected_method->method_holder()->is_interface()) {
// resolve interface call
if (ReflectionWrapResolutionErrors) {
// new default: 6531596
// Match resolution errors with those thrown due to reflection inlining
// Linktime resolution & IllegalAccessCheck already done by Class.getMethod()
method = resolve_interface_call(klass, reflected_method, target_klass, receiver, THREAD);
if (HAS_PENDING_EXCEPTION) {
// Method resolution threw an exception; wrap it in an InvocationTargetException
oop resolution_exception = PENDING_EXCEPTION;
CLEAR_PENDING_EXCEPTION;
JavaCallArguments args(Handle(THREAD, resolution_exception));
THROW_ARG_0(vmSymbols::java_lang_reflect_InvocationTargetException(),
vmSymbols::throwable_void_signature(),
&args);
}
} else {
method = resolve_interface_call(klass, reflected_method, target_klass, receiver, CHECK_(NULL));
}
}  else {
// if the method can be overridden, we resolve using the vtable index.
assert(!reflected_method->has_itable_index(), "");
int index = reflected_method->vtable_index();
method = reflected_method;
if (index != Method::nonvirtual_vtable_index) {
// target_klass might be an arrayKlassOop but all vtables start at
// the same place. The cast is to avoid virtual call and assertion.
InstanceKlass* inst = (InstanceKlass*)target_klass();
method = methodHandle(THREAD, inst->method_at_vtable(index));
}
if (!method.is_null()) {
// Check for abstract methods as well
if (method->is_abstract()) {
// new default: 6531596
if (ReflectionWrapResolutionErrors) {
ResourceMark rm(THREAD);
Handle h_origexception = Exceptions::new_exception(THREAD,
vmSymbols::java_lang_AbstractMethodError(),
Method::name_and_sig_as_C_string(target_klass(),
method->name(),
method->signature()));
JavaCallArguments args(h_origexception);
THROW_ARG_0(vmSymbols::java_lang_reflect_InvocationTargetException(),
vmSymbols::throwable_void_signature(),
&args);
} else {
ResourceMark rm(THREAD);
THROW_MSG_0(vmSymbols::java_lang_AbstractMethodError(),
Method::name_and_sig_as_C_string(target_klass(),
method->name(),
method->signature()));
}
}
}
}
}
}
// I believe this is a ShouldNotGetHere case which requires
// an internal vtable bug. If you ever get this please let Karen know.
if (method.is_null()) {
ResourceMark rm(THREAD);
THROW_MSG_0(vmSymbols::java_lang_NoSuchMethodError(),
Method::name_and_sig_as_C_string(klass(),
reflected_method->name(),
reflected_method->signature()));
}
// In the JDK 1.4 reflection implementation, the security check is
// done at the Java level
if (!(JDK_Version::is_gte_jdk14x_version() && UseNewReflection)) {
// Access checking (unless overridden by Method)
if (!override) {
if (!(klass->is_public() && reflected_method->is_public())) {
bool access = Reflection::reflect_check_access(klass(), reflected_method->access_flags(), target_klass(), is_method_invoke, CHECK_NULL);
if (!access) {
return NULL; // exception
}
}
}
} // !(Universe::is_gte_jdk14x_version() && UseNewReflection)
assert(ptypes->is_objArray(), "just checking");
int args_len = args.is_null() ? 0 : args->length();
// Check number of arguments
if (ptypes->length() != args_len) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "wrong number of arguments");
}
// Create object to contain parameters for the JavaCall
JavaCallArguments java_args(method->size_of_parameters());
if (!is_static) {
java_args.push_oop(receiver);
}
for (int i = 0; i < args_len; i++) {
oop type_mirror = ptypes->obj_at(i);
oop arg = args->obj_at(i);
if (java_lang_Class::is_primitive(type_mirror)) {
jvalue value;
BasicType ptype = basic_type_mirror_to_basic_type(type_mirror, CHECK_NULL);
BasicType atype = unbox_for_primitive(arg, &value, CHECK_NULL);
if (ptype != atype) {
widen(&value, atype, ptype, CHECK_NULL);
}
switch (ptype) {
case T_BOOLEAN:     java_args.push_int(value.z);    break;
case T_CHAR:        java_args.push_int(value.c);    break;
case T_BYTE:        java_args.push_int(value.b);    break;
case T_SHORT:       java_args.push_int(value.s);    break;
case T_INT:         java_args.push_int(value.i);    break;
case T_LONG:        java_args.push_long(value.j);   break;
case T_FLOAT:       java_args.push_float(value.f);  break;
case T_DOUBLE:      java_args.push_double(value.d); break;
default:
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "argument type mismatch");
}
} else {
if (arg != NULL) {
Klass* k = java_lang_Class::as_Klass(type_mirror);
if (!arg->is_a(k)) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "argument type mismatch");
}
}
Handle arg_handle(THREAD, arg);         // Create handle for argument
java_args.push_oop(arg_handle); // Push handle
}
}
assert(java_args.size_of_parameters() == method->size_of_parameters(), "just checking");
// All oops (including receiver) is passed in as Handles. An potential oop is returned as an
// oop (i.e., NOT as an handle)
JavaValue result(rtype);
JavaCalls::call(&result, method, &java_args, THREAD);
if (HAS_PENDING_EXCEPTION) {
// Method threw an exception; wrap it in an InvocationTargetException
oop target_exception = PENDING_EXCEPTION;
CLEAR_PENDING_EXCEPTION;
JavaCallArguments args(Handle(THREAD, target_exception));
THROW_ARG_0(vmSymbols::java_lang_reflect_InvocationTargetException(),
vmSymbols::throwable_void_signature(),
&args);
} else {
if (rtype == T_BOOLEAN || rtype == T_BYTE || rtype == T_CHAR || rtype == T_SHORT)
narrow((jvalue*) result.get_value_addr(), rtype, CHECK_NULL);
return box((jvalue*) result.get_value_addr(), rtype, CHECK_NULL);
}
}

Reflection::invoke_method()中调用Reflection::invoke(),然后在Reflection::invoke()方法中,当反射调用的方法是接口方法时,调用Reflection::resolve_interface_call(),该方法依赖LinkResolver::resolve_interface_call()来完成方法的动态链接过程,具体实现就不在这里展示。

method = resolve_interface_call(klass, reflected_method, target_klass, receiver, CHECK_(NULL));
methodHandle Reflection::resolve_interface_call(instanceKlassHandle klass, methodHandle method,
KlassHandle recv_klass, Handle receiver, TRAPS) {
assert(!method.is_null() , "method should not be null");
CallInfo info;
Symbol*  signature  = method->signature();
Symbol*  name       = method->name();
LinkResolver::resolve_interface_call(info, receiver, recv_klass, klass,
name, signature,
KlassHandle(), false, true,
CHECK_(methodHandle()));
return info.selected_method();
}

如果反射调用的方法是可以被覆盖的方法,例如Animal.print(), Reflection::invoke()最终通过查询虚方法表vtable来确定最终的method。

        // if the method can be overridden, we resolve using the vtable index.
assert(!reflected_method->has_itable_index(), "");
int index = reflected_method->vtable_index();
method = reflected_method;
if (index != Method::nonvirtual_vtable_index) {
// target_klass might be an arrayKlassOop but all vtables start at
// the same place. The cast is to avoid virtual call and assertion.
InstanceKlass* inst = (InstanceKlass*)target_klass();
method = methodHandle(THREAD, inst->method_at_vtable(index));
}

 

总结

1.method.invoke()方法支持多态特性,其native实现在方法真正执行之前通过动态连接或者虚方法表来实现。

2.框架中使用method.invoke()执行方法调用时,初始获取method对象时,可以先调用一次setAccessable(true),使得后面每次调用invoke()时,节省一次方法修饰符的判断,略微提升性能。业务允许的情况下,Field同样可以如此操作。

3.委托模式可以解决一种方案的多种实现之间自由切换,而代理模式只能根据传入的被代理对象来实现功能。

 

 

参考文章:

JAVA深入研究——Method的Invoke方法

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/130414.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • php判断坐标是否在指定的多边形中「建议收藏」

    php判断坐标是否在指定的多边形中

  • vue axios跨域问题的三种解决方案_vue如何实现跨域

    vue axios跨域问题的三种解决方案_vue如何实现跨域vue3项目,axios跨域处理,代理

  • linux15:TCP端口状态说明「建议收藏」

    linux15:TCP端口状态说明「建议收藏」TCP状态转移要点TCP协议规定,对于已经建立的连接,网络双方要进行四次握手才能成功断开连接,如果缺少了其中某个步骤,将会使连接处于假死状态,连接本身占用的资源不会被释放。服务器程序要同时管理大量连接,所以很有必要保证无用连接完全断开,否则大量僵死的连接会浪费许多服务器资源。在众多TCP状态中,最值得注意的状态有两个:CLOSE_WAIT和TIME_WAIT。1、LISTENING状态FTP服务启动后首先处于监听(LISTENING)状态。2、ESTABLISHED状态ESTABLISH

  • JVM 类加载机制_类加载机制的作用和过程

    JVM 类加载机制_类加载机制的作用和过程一、概述我们知道java代码会被编译为.class文件,这里class文件中的类信息最终还是需要jvm加载以后才能使用。事实上,虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验,转

  • js中splice是什么意思_vue中splice方法

    js中splice是什么意思_vue中splice方法在js中,arr.splice(str)方法是处理数组的利器,利用它可以实现在指定位置删除、替换、插入指定数量的元素。其语法为: 1arr.splice(index[,deleteCo

  • 前端开发博客_程序员的个人博客

    前端开发博客_程序员的个人博客国内技术团队博客,大多集中在前端,下面是这些前端技术团队的博客。还有少量非前端(或者不只是前端)的技术博客,单独整理到另一个列表中去了(点击前往)【腾讯】腾讯前端Web团队IMWEBhttp://imweb.ioIMWEB团队创立之初是负责腾讯最核心的基础业务:QQ注册、QQ登录(ptlogin)、QQ资料和关系链拓展等基础服务。后转型进行应用开发,分别投入Q+、QQ圈

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号