大家好,又见面了,我是你们的朋友全栈君。
关于深度学习的一些个人浅见:
深度学习通常是训练深度(多层)神经网络,用于模式识别(如语音、图像识别);深度网络 指是具有深层(多层)网络结构的神经网络。
深层网络由于神经元多,参数多,拟合表现能力强,有表现欲解决复杂问题的能力。
但是深度网络存在很多局部最优解,深度网络的训练容易停留在局部最优上,初始参数的选择对网络最终收敛在那个位置有很大的影响。
采用限制玻尔兹曼机RBM对深度网络做逐层无监督训练,将各单层训练得到的参数作为深度网络各层神经元的初始参数,该参数是深度网络参数空间的一个较好位置(容易)。
RBM逐层训练出深度网络参数初值后,在用传统的BP算法对深度网络进行训练,如此,深度网络的参数最终将收敛在一个好的位置。
RBM通过迭代大量数据的无监督训练,把能够提炼出训练数据的较本质的特征,这被认为是好的初始参数。
本例子为matlab编写,为用数字识别训练一个手写数字识别的深度神经网络。
另外需要DBN的支持代码,可以从这里下载:http://download.csdn.net/detail/hzq20081121107/7857735,http://pan.baidu.com/s/1c0fBQsK
网络结构采用 784,400,200,100,50,20,10的网络结构。
function aGetDeepNet()
clc
clear all
%得到训练数据
load('adata.mat','train_digitdata','train_targets');
X = train_digitdata;
Y = train_targets;
%输入数据初始化
Xmin = min(X);
Xmax = max(X);
X = bsxfun(@rdivide,bsxfun(@minus,X,Xmin),(Xmax-Xmin));
%RBM训练得到第一隐层的网络参数,rbm输入为图片数据
rbm1 = rbm([784,400]);
rbm1 = checkrbmtrain(@rbmtrain1,rbm1,X,50,0.1);
net_rbm1 = rbm2nnet(rbm1,'up');
h1 = nnetfw(net_rbm1,X);
%RBM训练得到第二隐层的网络参数,输入为第一隐层的输出
rbm2 = rbm([400,200]);
rbm2 = checkrbmtrain(@rbmtrain1,rbm2,h1,50,0.1);
net_rbm2 = rbm2nnet(rbm2,'up');
h2 = nnetfw(net_rbm2,h1);
%RBM训练得到第三隐层的网络参数,输入为第二隐层的输出
rbm3 = rbm([200,100]);
rbm3 = checkrbmtrain(@rbmtrain1,rbm3,h2,50,0.1);
net_rbm3 = rbm2nnet(rbm3,'up');
h3 = nnetfw(net_rbm3,h2);
%RBM训练得到第四隐层的网络参数,输入为第三隐层的输出
rbm4 = rbm([100,50]);
rbm4 = checkrbmtrain(@rbmtrain1,rbm4,h3,50,0.1);
net_rbm4 = rbm2nnet(rbm4,'up');
h4 = nnetfw(net_rbm4,h3);
%RBM训练得到第五隐层的网络参数,输入为第四隐层的输出
rbm5 = rbm([50,20]);
rbm5 = checkrbmtrain(@rbmtrain1,rbm5,h4,50,0.1);
net_rbm5 = rbm2nnet(rbm5,'up');
h5 = nnetfw(net_rbm5,h4);
%构建深度网络,并初始化参数为rbm训练出的参数。
net1 = nnet([784,400,200,100,50,20,10],'softmax');
net1.w{1} = net_rbm1.w{1};
net1.w{2} = net_rbm2.w{1};
net1.w{3} = net_rbm3.w{1};
net1.w{4} = net_rbm4.w{1};
net1.w{5} = net_rbm5.w{1};
%对深度网络进行BP训练
net2 = nnettrain(net1,X,Y,1000);
%用训练好的深度网络net2分类识别
y = nnetfw(net2,X);
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/128693.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...