大家好,又见面了,我是你们的朋友全栈君。
一、二阶和三阶行列式
1.二阶行列式
PS:只适用于二元线性方程;
2.三阶行列式
二、全排列及其逆序数
1.全排列
把n个不同的元素排成一列,叫做这n个元素的全排列;
2.逆序数
对于n个不同的元素,先规定各元素之间有一个标准次序,于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有一个一个逆序,一个排列中所有逆序的总数叫做这个排列的逆序数。逆序数为奇数的排列叫做奇排列,为偶数的的排列叫做偶排列;
三、n阶行列式的定义
由三阶行列式入手,三阶行列式可以写成
以此类推,可以推广到一般n阶行列式
四、对换
在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换,将相邻两个元素对换,叫做相邻对换;
1.一个排列中的任意两个元素对换,排列改变奇偶性;
推论:奇排列变成标准排列的对换次数为奇数,偶排列则为偶数;
2.
五、行列式的性质
1.行列式和他的转置行列式相等;
2.互换行列式的两行(列),行列式变号;
推论:如果行列式有两行(列)完全相等,则此行列式等于零;
3.行列式的某一行(列)中的所有元素都乘以同一数k,等于用k乘此行列式;
推论:行列式中的某一行(列)的所有元素的公因子可以提到行列式记号的外面;
六、行列式按行(列)展开
1.
引理:一个n阶行列式,如果其中第i行所有元素除(i,j)元a(ij)外都为零,那么这行列式等于a(ij)与它的代数余子式的乘积,即
2.行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即
这个定理叫做行列式按行(列)展开法则,利用这一法则可以简化行列式的性质;
七、克拉默法则
1.
2.如果线性方程组的系数行列式D不等于0,则其一定有解,且解是唯一的;反之,如果方程组无解或有两个不同的解,则它的系数行列式必为零;
3.对于齐次线性方程(即等式右边全为0),如果系数行列式D不等于0,则齐次线性方程组没有非零解;反之,如果有非零解,则系数行列式必为0;
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/128368.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...