python random randint_Python random.randint方法代码示例[通俗易懂]

本文整理汇总了Python中numpy.random.randint方法的典型用法代码示例。如果您正苦于以下问题:Pythonrandom.randint方法的具体用法?Pythonrandom.randint怎么用?Pythonrandom.randint使用的例子?那么恭喜您,这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块numpy.random的用法示例…

大家好,又见面了,我是你们的朋友全栈君。

本文整理汇总了Python中numpy.random.randint方法的典型用法代码示例。如果您正苦于以下问题:Python random.randint方法的具体用法?Python random.randint怎么用?Python random.randint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块numpy.random的用法示例。

在下文中一共展示了random.randint方法的24个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: random_select

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def random_select(img_scales):

“””Randomly select an img_scale from given candidates.

Args:

img_scales (list[tuple]): Images scales for selection.

Returns:

(tuple, int): Returns a tuple “(img_scale, scale_dix)“,

where “img_scale“ is the selected image scale and

“scale_idx“ is the selected index in the given candidates.

“””

assert mmcv.is_list_of(img_scales, tuple)

scale_idx = np.random.randint(len(img_scales))

img_scale = img_scales[scale_idx]

return img_scale, scale_idx

开发者ID:open-mmlab,项目名称:mmdetection,代码行数:18,

示例2: random_sample

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def random_sample(img_scales):

“””Randomly sample an img_scale when “multiscale_mode==’range’“.

Args:

img_scales (list[tuple]): Images scale range for sampling.

There must be two tuples in img_scales, which specify the lower

and uper bound of image scales.

Returns:

(tuple, None): Returns a tuple “(img_scale, None)“, where

“img_scale“ is sampled scale and None is just a placeholder

to be consistent with :func:`random_select`.

“””

assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2

img_scale_long = [max(s) for s in img_scales]

img_scale_short = [min(s) for s in img_scales]

long_edge = np.random.randint(

min(img_scale_long),

max(img_scale_long) + 1)

short_edge = np.random.randint(

min(img_scale_short),

max(img_scale_short) + 1)

img_scale = (long_edge, short_edge)

return img_scale, None

开发者ID:open-mmlab,项目名称:mmdetection,代码行数:27,

示例3: sample

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def sample(self, batch_size):

“””

computes (x_t,u_t,x_{t+1}) pair

returns tuple of 3 ndarrays with shape

(batch,x_dim), (batch, u_dim), (batch, x_dim)

“””

if not self.initialized:

raise ValueError(“Dataset not loaded – call PlaneData.initialize() first.”)

traj=randint(0,num_t,size=batch_size) # which trajectory

tt=randint(0,T-1,size=batch_size) # time step t for each batch

X0=np.zeros((batch_size,x_dim))

U0=np.zeros((batch_size,u_dim),dtype=np.int)

X1=np.zeros((batch_size,x_dim))

for i in range(batch_size):

t=tt[i]

p=self.P[traj[i], t, :]

X0[i,:]=self.getX(traj[i],t)

X1[i,:]=self.getX(traj[i],t+1)

U0[i,:]=self.U[traj[i], t, :]

return (X0,U0,X1)

开发者ID:ericjang,项目名称:e2c,代码行数:22,

示例4: test_count_nonzero_axis_consistent

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_count_nonzero_axis_consistent(self):

# Check that the axis behaviour for valid axes in

# non-special cases is consistent (and therefore

# correct) by checking it against an integer array

# that is then casted to the generic object dtype

from itertools import combinations, permutations

axis = (0, 1, 2, 3)

size = (5, 5, 5, 5)

msg = “Mismatch for axis: %s”

rng = np.random.RandomState(1234)

m = rng.randint(-100, 100, size=size)

n = m.astype(object)

for length in range(len(axis)):

for combo in combinations(axis, length):

for perm in permutations(combo):

assert_equal(

np.count_nonzero(m, axis=perm),

np.count_nonzero(n, axis=perm),

err_msg=msg % (perm,))

开发者ID:Frank-qlu,项目名称:recruit,代码行数:24,

示例5: test_frame_negate

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_frame_negate(self):

expr = self.ex(‘-‘)

# float

lhs = DataFrame(randn(5, 2))

expect = -lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_frame_equal(expect, result)

# int

lhs = DataFrame(randint(5, size=(5, 2)))

expect = -lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_frame_equal(expect, result)

# bool doesn’t work with numexpr but works elsewhere

lhs = DataFrame(rand(5, 2) > 0.5)

if self.engine == ‘numexpr’:

with pytest.raises(NotImplementedError):

result = pd.eval(expr, engine=self.engine, parser=self.parser)

else:

expect = -lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_frame_equal(expect, result)

开发者ID:Frank-qlu,项目名称:recruit,代码行数:26,

示例6: test_series_negate

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_series_negate(self):

expr = self.ex(‘-‘)

# float

lhs = Series(randn(5))

expect = -lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_series_equal(expect, result)

# int

lhs = Series(randint(5, size=5))

expect = -lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_series_equal(expect, result)

# bool doesn’t work with numexpr but works elsewhere

lhs = Series(rand(5) > 0.5)

if self.engine == ‘numexpr’:

with pytest.raises(NotImplementedError):

result = pd.eval(expr, engine=self.engine, parser=self.parser)

else:

expect = -lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_series_equal(expect, result)

开发者ID:Frank-qlu,项目名称:recruit,代码行数:26,

示例7: test_series_pos

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_series_pos(self):

expr = self.ex(‘+’)

# float

lhs = Series(randn(5))

expect = lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_series_equal(expect, result)

# int

lhs = Series(randint(5, size=5))

expect = lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_series_equal(expect, result)

# bool doesn’t work with numexpr but works elsewhere

lhs = Series(rand(5) > 0.5)

expect = lhs

result = pd.eval(expr, engine=self.engine, parser=self.parser)

assert_series_equal(expect, result)

开发者ID:Frank-qlu,项目名称:recruit,代码行数:22,

示例8: test_identity_module

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_identity_module(self):

“”” identity module should preserve input “””

with IsolatedSession() as issn:

pred_input = tf.placeholder(tf.float32, [None, None])

final_output = tf.identity(pred_input, name=’output’)

gfn = issn.asGraphFunction([pred_input], [final_output])

for _ in range(10):

m, n = prng.randint(10, 1000, size=2)

mat = prng.randn(m, n).astype(np.float32)

with IsolatedSession() as issn:

feeds, fetches = issn.importGraphFunction(gfn)

mat_out = issn.run(fetches[0], {feeds[0]: mat})

self.assertTrue(np.all(mat_out == mat))

开发者ID:databricks,项目名称:spark-deep-learning,代码行数:18,

示例9: _sample_indices

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def _sample_indices(self, record):

“””

:param record: VideoRecord

:return: list

“””

if self.dense_sample: # i3d dense sample

sample_pos = max(1, 1 + record.num_frames – 64)

t_stride = 64 // self.num_segments

start_idx = 0 if sample_pos == 1 else np.random.randint(0, sample_pos – 1)

offsets = [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)]

return np.array(offsets) + 1

else: # normal sample

average_duration = (record.num_frames – self.new_length + 1) // self.num_segments

if average_duration > 0:

offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration,

size=self.num_segments)

elif record.num_frames > self.num_segments:

offsets = np.sort(randint(record.num_frames – self.new_length + 1, size=self.num_segments))

else:

offsets = np.zeros((self.num_segments,))

return offsets + 1

开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:24,

示例10: resample

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def resample(self, size=None):

“””

Randomly sample a dataset from the estimated pdf.

Parameters

———-

size : int, optional

The number of samples to draw. If not provided, then the size is

the same as the underlying dataset.

Returns

——-

resample : (self.d, `size`) ndarray

The sampled dataset.

“””

if size is None:

size = self.n

norm = transpose(multivariate_normal(zeros((self.d,), float),

self.covariance, size=size))

indices = randint(0, self.n, size=size)

means = self.dataset[:, indices]

return means + norm

开发者ID:ryfeus,项目名称:lambda-packs,代码行数:27,

示例11: _get_glyph

​点赞 6

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def _get_glyph(gnum, height, width, shift_prob, shift_size):

if isinstance(gnum, list):

n = randint(*gnum)

else:

n = gnum

glyph = random_points_in_circle(

n, 0, 0, 0.5

)*array((width, height), ‘float’)

_spatial_sort(glyph)

if random()

shift = ((-1)**randint(0,2))*shift_size*height

glyph[:,1] += shift

if random()<0.5:

ii = randint(0,n-1,size=(1))

xy = glyph[ii,:]

glyph = row_stack((glyph, xy))

return glyph

开发者ID:inconvergent,项目名称:sand-glyphs,代码行数:23,

示例12: rand_shape_2d

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def rand_shape_2d(dim0=10, dim1=10):

return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1)

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:4,

示例13: rand_shape_3d

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def rand_shape_3d(dim0=10, dim1=10, dim2=10):

return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1), rnd.randint(1, dim2 + 1)

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:4,

示例14: rand_shape_nd

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def rand_shape_nd(num_dim, dim=10):

return tuple(rnd.randint(1, dim+1, size=num_dim))

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:4,

示例15: test_sparse_nd_slice

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_sparse_nd_slice():

shape = (rnd.randint(2, 10), rnd.randint(2, 10))

stype = ‘csr’

A, _ = rand_sparse_ndarray(shape, stype)

A2 = A.asnumpy()

start = rnd.randint(0, shape[0] – 1)

end = rnd.randint(start + 1, shape[0])

assert same(A[start:end].asnumpy(), A2[start:end])

assert same(A[start – shape[0]:end].asnumpy(), A2[start:end])

assert same(A[start:].asnumpy(), A2[start:])

assert same(A[:end].asnumpy(), A2[:end])

ind = rnd.randint(-shape[0], shape[0] – 1)

assert same(A[ind].asnumpy(), A2[ind][np.newaxis, :])

start_col = rnd.randint(0, shape[1] – 1)

end_col = rnd.randint(start_col + 1, shape[1])

result = mx.nd.slice(A, begin=(start, start_col), end=(end, end_col))

result_dense = mx.nd.slice(mx.nd.array(A2), begin=(start, start_col), end=(end, end_col))

assert same(result_dense.asnumpy(), result.asnumpy())

A = mx.nd.sparse.zeros(‘csr’, shape)

A2 = A.asnumpy()

assert same(A[start:end].asnumpy(), A2[start:end])

result = mx.nd.slice(A, begin=(start, start_col), end=(end, end_col))

result_dense = mx.nd.slice(mx.nd.array(A2), begin=(start, start_col), end=(end, end_col))

assert same(result_dense.asnumpy(), result.asnumpy())

def check_slice_nd_csr_fallback(shape):

stype = ‘csr’

A, _ = rand_sparse_ndarray(shape, stype)

A2 = A.asnumpy()

start = rnd.randint(0, shape[0] – 1)

end = rnd.randint(start + 1, shape[0])

# non-trivial step should fallback to dense slice op

result = mx.nd.sparse.slice(A, begin=(start,), end=(end + 1,), step=(2,))

result_dense = mx.nd.slice(mx.nd.array(A2), begin=(start,), end=(end + 1,), step=(2,))

assert same(result_dense.asnumpy(), result.asnumpy())

shape = (rnd.randint(2, 10), rnd.randint(1, 10))

check_slice_nd_csr_fallback(shape)

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:43,

示例16: test_sparse_nd_concat

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_sparse_nd_concat():

def check_concat(arrays):

ret = np.concatenate([arr.asnumpy() for arr in arrays], axis=0)

same(mx.nd.concat(*arrays, dim=0).asnumpy(), ret)

nds = []

zero_nds = []

ncols = rnd.randint(2, 10)

for i in range(3):

shape = (rnd.randint(2, 10), ncols)

A, _ = rand_sparse_ndarray(shape, ‘csr’)

nds.append(A)

zero_nds.append(mx.nd.zeros(shape).tostype(‘csr’))

check_concat(nds)

check_concat(zero_nds)

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:16,

示例17: test_sparse_nd_binary_scalar_op

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_sparse_nd_binary_scalar_op():

N = 3

def check(fn, stype, out_stype=None):

for _ in range(N):

ndim = 2

shape = np.random.randint(1, 6, size=(ndim,))

npy = np.random.normal(0, 1, size=shape)

nd = mx.nd.array(npy).tostype(stype)

if out_stype is not None:

assert(nd.stype == out_stype)

assert_allclose(fn(npy), fn(nd).asnumpy(), rtol=1e-4, atol=1e-4)

stypes = [‘row_sparse’, ‘csr’]

for stype in stypes:

check(lambda x: 1 + x, stype)

check(lambda x: 1 – x, stype)

check(lambda x: 1 * x, stype)

check(lambda x: 1 / x, stype)

check(lambda x: 2 ** x, stype)

check(lambda x: 1 > x, stype)

check(lambda x: 0.5 > x, stype)

check(lambda x: 0.5 < x, stype)

check(lambda x: 0.5 >= x, stype)

check(lambda x: 0.5 <= x, stype)

check(lambda x: 0.5 == x, stype)

check(lambda x: x / 2, stype, out_stype=stype)

check(lambda x: x + 0, stype, out_stype=stype)

check(lambda x: x – 0, stype, out_stype=stype)

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:30,

示例18: test_sparse_nd_binary_iop

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_sparse_nd_binary_iop():

N = 3

def check_binary(fn, stype):

for _ in range(N):

ndim = 2

oshape = np.random.randint(1, 6, size=(ndim,))

lshape = list(oshape)

rshape = list(oshape)

lhs = np.random.uniform(0, 1, size=lshape)

rhs = np.random.uniform(0, 1, size=rshape)

lhs_nd = mx.nd.array(lhs).tostype(stype)

rhs_nd = mx.nd.array(rhs).tostype(stype)

assert_allclose(fn(lhs, rhs),

fn(lhs_nd, rhs_nd).asnumpy(),

rtol=1e-4, atol=1e-4)

def inplace_add(x, y):

x += y

return x

def inplace_mul(x, y):

x *= y

return x

stypes = [‘csr’, ‘row_sparse’]

fns = [inplace_add, inplace_mul]

for stype in stypes:

for fn in fns:

check_binary(fn, stype)

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:29,

示例19: test_sparse_nd_save_load

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def test_sparse_nd_save_load():

repeat = 1

stypes = [‘default’, ‘row_sparse’, ‘csr’]

stype_dict = {‘default’: NDArray, ‘row_sparse’: RowSparseNDArray, ‘csr’: CSRNDArray}

num_data = 20

densities = [0, 0.5]

fname = ‘tmp_list.bin’

for _ in range(repeat):

data_list1 = []

for i in range(num_data):

stype = stypes[np.random.randint(0, len(stypes))]

shape = rand_shape_2d(dim0=40, dim1=40)

density = densities[np.random.randint(0, len(densities))]

data_list1.append(rand_ndarray(shape, stype, density))

assert isinstance(data_list1[-1], stype_dict[stype])

mx.nd.save(fname, data_list1)

data_list2 = mx.nd.load(fname)

assert len(data_list1) == len(data_list2)

for x, y in zip(data_list1, data_list2):

assert same(x.asnumpy(), y.asnumpy())

data_map1 = {‘ndarray xx %s’ % i: x for i, x in enumerate(data_list1)}

mx.nd.save(fname, data_map1)

data_map2 = mx.nd.load(fname)

assert len(data_map1) == len(data_map2)

for k, x in data_map1.items():

y = data_map2[k]

assert same(x.asnumpy(), y.asnumpy())

os.remove(fname)

开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:32,

示例20: get_minibatch

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def get_minibatch(roidb, num_classes):

“””Given a roidb, construct a minibatch sampled from it.”””

num_images = len(roidb)

# Sample random scales to use for each image in this batch

random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES),

size=num_images)

assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \

‘num_images ({}) must divide BATCH_SIZE ({})’. \

format(num_images, cfg.TRAIN.BATCH_SIZE)

# Get the input image blob, formatted for caffe

im_blob, im_scales = _get_image_blob(roidb, random_scale_inds)

blobs = {‘data’: im_blob}

assert len(im_scales) == 1, “Single batch only”

assert len(roidb) == 1, “Single batch only”

# gt boxes: (x1, y1, x2, y2, cls)

if cfg.TRAIN.USE_ALL_GT:

# Include all ground truth boxes

gt_inds = np.where(roidb[0][‘gt_classes’] != 0)[0]

else:

# For the COCO ground truth boxes, exclude the ones that are ”iscrowd”

gt_inds = np.where(roidb[0][‘gt_classes’] != 0 & np.all(roidb[0][‘gt_overlaps’].toarray() > -1.0, axis=1))[0]

gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32)

gt_boxes[:, 0:4] = roidb[0][‘boxes’][gt_inds, :] * im_scales[0]

gt_boxes[:, 4] = roidb[0][‘gt_classes’][gt_inds]

blobs[‘gt_boxes’] = gt_boxes

blobs[‘im_info’] = np.array(

[[im_blob.shape[1], im_blob.shape[2], im_scales[0]]],

dtype=np.float32)

blobs[‘img_id’] = roidb[0][‘img_id’]

return blobs

开发者ID:guoruoqian,项目名称:cascade-rcnn_Pytorch,代码行数:38,

示例21: _sample_indices

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def _sample_indices(self, record):

“””

:param record: VideoRecord

:return: list

“””

average_duration = (record.num_frames – self.new_length + 1) // self.num_segments

if average_duration > 0:

offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration, size=self.num_segments)

elif record.num_frames > self.num_segments:

offsets = np.sort(randint(record.num_frames – self.new_length + 1, size=self.num_segments))

else:

offsets = np.zeros((self.num_segments,))

return offsets + 1

开发者ID:yjxiong,项目名称:tsn-pytorch,代码行数:17,

示例22: __call__

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def __call__(self, image, boxes=None, labels=None):

if random.randint(2):

image[:, :, 1] *= random.uniform(self.lower, self.upper)

return image, boxes, labels

开发者ID:soo89,项目名称:CSD-SSD,代码行数:7,

示例23: compute_traj

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def compute_traj(self, max_dist=1):

# computes P,U data for single trajectory

# all P,U share the same environment obstacles.png

P=np.zeros((T,2),dtype=np.int) # r,c position

U=np.zeros((T,u_dim),dtype=np.int)

P[0,:]=[rw,randint(rw,w-rw)] # initial location

for t in range(1,T):

p=np.copy(P[t-1,:])

# dr direction

d=randint(-1,2) # direction

nsteps=randint(max_dist+1)

dr=d*nsteps # applied control

for i in range(nsteps):

p[0]+=d

if self.is_colliding(p):

p[0]-=d

break

# dc direction

d=randint(-1,2) # direction

nsteps=randint(max_dist+1)

dc=d*nsteps # applied control

for i in range(nsteps):

p[1]+=d

if self.is_colliding(p):

p[1]-=d # step back

break

P[t,:]=p

U[t,:]=[dr,dc]

return P,U

开发者ID:ericjang,项目名称:e2c,代码行数:31,

示例24: __call__

​点赞 5

# 需要导入模块: from numpy import random [as 别名]

# 或者: from numpy.random import randint [as 别名]

def __call__(self, img, boxes, labels):

if random.randint(2):

return img, boxes, labels

h, w, c = img.shape

ratio = random.uniform(self.min_ratio, self.max_ratio)

expand_img = np.full((int(h * ratio), int(w * ratio), c),

self.mean).astype(img.dtype)

left = int(random.uniform(0, w * ratio – w))

top = int(random.uniform(0, h * ratio – h))

expand_img[top:top + h, left:left + w] = img

img = expand_img

boxes += np.tile((left, top), 2)

return img, boxes, labels

开发者ID:dingjiansw101,项目名称:AerialDetection,代码行数:16,

注:本文中的numpy.random.randint方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/127638.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 《大话西游》20年后重映(附影评:《大话西游》你真的看懂了吗?)

    《大话西游》20年后重映(附影评:《大话西游》你真的看懂了吗?)

  • 深入理解学习Git工作流(git-workflow-tutorial)

    深入理解学习Git工作流(git-workflow-tutorial)

  • (python源码,详细注解 )多目标粒子群算法 mopso

    (python源码,详细注解 )多目标粒子群算法 mopso1本代码功能用多目标粒子群算法(mopso)寻找pareto最优解集2算法介绍2.1简单步骤:(1)初始化群体粒子群的位置和速度,计算适应值(2)根据pareto支配原则,计算得到Archive集(存放当前的非劣解)(3)计算pbest(4)计算Archive集中的拥挤度(5)在Archive集选择gbest(6)更新粒子的速度、位置、适应值(7)更新Archive集(还要注意防止溢出)(…

  • windows server ftp服务器怎么搭建_serveru访问ftp

    windows server ftp服务器怎么搭建_serveru访问ftp首先说说什么是ftp?FTP协议是专门针对在两个系统之间传输大的文件这种应用开发出来的,它是TCP/IP协议的一部分。FTP的意思就是文件传输协议,用来管理TCP/IP网络上大型文件的快速传输。FTP最早也是在Unix上开发出来的,并且很长一段时间里只有Unix系统支持FTP功能,后来逐渐普及到其他系统,并成为Internet/Intranet网络中的标准组件。FTP服务器就是局域网信息资源的存储中心,主要是用来进行文件共享和传输。为了便于数据信息的共享和沟通,很多企业甚至个人都想搭建自己的ftp

  • 男人的恋爱过程「建议收藏」

    男人的恋爱过程「建议收藏」当对选择恋人的过程越谨慎,就越容易找到适合的恋人。虽然有的人很快就达到目的,但是基本上这是一个不断尝试与错误的过程。透过自我调整,最后终将达成目的。对常规四个阶段变化的了解,你可以了解你距离目标还有多远。让我们仔细探索男人、在四个阶段中的不同反应。男人:生理上的吸引在第一阶段男人对女人先产生生理上的吸引是很正常的。男人尤其注意女人的外表,她走路的方式、她的头发、微笑、眼睛、身高、美腿、…

  • WebSocket介绍和Socket的区别

    WebSocket介绍和Socket的区别  WebSocket介绍与原理WebSocketprotocol是HTML5一种新的协议。它实现了浏览器与服务器全双工通信(full-duplex)。一开始的握手需要借助HTTP请求完成。——百度百科目的:即时通讯,替代轮询网站上的即时通讯是很常见的,比如网页的QQ,聊天系统等。按照以往的技术能力通常是采用轮询、Comet技术解决。HTTP协议是非持久化的,单向的网…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号