大家好,又见面了,我是你们的朋友全栈君。
模型融合stacking的原理具体不再解释,有的博客已经解释很清楚了,还是附一张经典图吧,
直接上完整程序(根据后面的数据集下载地址可以下载数据集,然后直接运行程序):
# Load in our libraries
import pandas as pd
import numpy as np
import re
import xgboost as xgb
import warnings
warnings.filterwarnings('ignore')
# Going to use these 5 base models for the stacking
from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier,
GradientBoostingClassifier, ExtraTreesClassifier)
from sklearn.svm import SVC
from sklearn.cross_validation import KFold
'''
--------------Feature Exploration, Engineering and Cleaning------------------
'''
# Load in the train and test datasets
train = pd.read_csv('./data/train.csv')
test = pd.read_csv('./data/test.csv')
# Store our passenger ID for easy access
PassengerId = test['PassengerId']
# Feature Engineering
full_data = [train, test]
# Some features of my own that I have added in
# Gives the length of the name
train['Name_length'] = train['Name'].apply(len)
test['Name_length'] = test['Name'].apply(len)
# Feature that tells whether a passenger had a cabin on the Titanic
train['Has_Cabin'] = train["Cabin"].apply(lambda x: 0 if type(x) == float else 1)
test['Has_Cabin'] = test["Cabin"].apply(lambda x: 0 if type(x) == float else 1)
# Feature engineering steps taken from Sina
# Create new feature FamilySize as a combination of SibSp and Parch
for dataset in full_data:
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
# Create new feature IsAlone from FamilySize
for dataset in full_data:
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1
# Remove all NULLS in the Embarked column
for dataset in full_data:
dataset['Embarked'] = dataset['Embarked'].fillna('S')
# Remove all NULLS in the Fare column and create a new feature CategoricalFare
for dataset in full_data:
dataset['Fare'] = dataset['Fare'].fillna(train['Fare'].median())
train['CategoricalFare'] = pd.qcut(train['Fare'], 4)
# Create a New feature CategoricalAge
for dataset in full_data:
age_avg = dataset['Age'].mean()
age_std = dataset['Age'].std()
age_null_count = dataset['Age'].isnull().sum()
age_null_random_list = np.random.randint(age_avg - age_std, age_avg + age_std, size=age_null_count)
dataset['Age'][np.isnan(dataset['Age'])] = age_null_random_list
dataset['Age'] = dataset['Age'].astype(int)
train['CategoricalAge'] = pd.cut(train['Age'], 5)
# Define function to extract titles from passenger names
def get_title(name):
title_search = re.search(' ([A-Za-z]+)\.', name)
# If the title exists, extract and return it.
if title_search:
return title_search.group(1)
return ""
# Create a new feature Title, containing the titles of passenger names
for dataset in full_data:
dataset['Title'] = dataset['Name'].apply(get_title)
# Group all non-common titles into one single grouping "Rare"
for dataset in full_data:
dataset['Title'] = dataset['Title'].replace(
['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
for dataset in full_data:
# Mapping Sex
dataset['Sex'] = dataset['Sex'].map({'female': 0, 'male': 1}).astype(int)
# Mapping titles
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
dataset['Title'] = dataset['Title'].map(title_mapping)
dataset['Title'] = dataset['Title'].fillna(0)
# Mapping Embarked
dataset['Embarked'] = dataset['Embarked'].map({'S': 0, 'C': 1, 'Q': 2}).astype(int)
# Mapping Fare
dataset.loc[dataset['Fare'] <= 7.91, 'Fare'] = 0
dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2
dataset.loc[dataset['Fare'] > 31, 'Fare'] = 3
dataset['Fare'] = dataset['Fare'].astype(int)
# Mapping Age
dataset.loc[dataset['Age'] <= 16, 'Age'] = 0
dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
dataset.loc[dataset['Age'] > 64, 'Age'] = 4
# Feature selection
drop_elements = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp']
train = train.drop(drop_elements, axis = 1)
train = train.drop(['CategoricalAge', 'CategoricalFare'], axis = 1)
test = test.drop(drop_elements, axis = 1)
# Visualisations略
'''
----------------------Ensembling & Stacking models---------------------
'''
# Helpers via Python Classes
# Some useful parameters which will come in handy later on
ntrain = train.shape[0]
ntest = test.shape[0]
SEED = 0 # for reproducibility
NFOLDS = 5 # set folds for out-of-fold prediction
kf = KFold(ntrain, n_folds=NFOLDS, random_state=SEED)
# Class to extend the Sklearn classifier
class SklearnHelper(object):
def __init__(self, clf, seed=0, params=None):
params['random_state'] = seed
self.clf = clf(**params)
def train(self, x_train, y_train):
self.clf.fit(x_train, y_train)
def predict(self, x):
return self.clf.predict(x)
def fit(self, x, y):
return self.clf.fit(x, y)
def feature_importances(self, x, y):
print(self.clf.fit(x, y).feature_importances_)
# Class to extend XGboost classifer
# Out-of-Fold Predictions
def get_oof(clf, x_train, y_train, x_test):
oof_train = np.zeros((ntrain,))
oof_test = np.zeros((ntest,))
oof_test_skf = np.empty((NFOLDS, ntest))
for i, (train_index, test_index) in enumerate(kf):
x_tr = x_train[train_index]
y_tr = y_train[train_index]
x_te = x_train[test_index]
clf.train(x_tr, y_tr)
oof_train[test_index] = clf.predict(x_te)
oof_test_skf[i, :] = clf.predict(x_test)
oof_test[:] = oof_test_skf.mean(axis=0)
return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1)
# Put in our parameters for said classifiers
# Random Forest parameters
rf_params = {
'n_jobs': -1,
'n_estimators': 500,
'warm_start': True,
#'max_features': 0.2,
'max_depth': 6,
'min_samples_leaf': 2,
'max_features' : 'sqrt',
'verbose': 0
}
# Extra Trees Parameters
et_params = {
'n_jobs': -1,
'n_estimators':500,
#'max_features': 0.5,
'max_depth': 8,
'min_samples_leaf': 2,
'verbose': 0
}
# AdaBoost parameters
ada_params = {
'n_estimators': 500,
'learning_rate' : 0.75
}
# Gradient Boosting parameters
gb_params = {
'n_estimators': 500,
#'max_features': 0.2,
'max_depth': 5,
'min_samples_leaf': 2,
'verbose': 0
}
# Support Vector Classifier parameters
svc_params = {
'kernel' : 'linear',
'C' : 0.025
}
# Create 5 objects that represent our 4 models
rf = SklearnHelper(clf=RandomForestClassifier, seed=SEED, params=rf_params)
et = SklearnHelper(clf=ExtraTreesClassifier, seed=SEED, params=et_params)
ada = SklearnHelper(clf=AdaBoostClassifier, seed=SEED, params=ada_params)
gb = SklearnHelper(clf=GradientBoostingClassifier, seed=SEED, params=gb_params)
svc = SklearnHelper(clf=SVC, seed=SEED, params=svc_params)
# Create Numpy arrays of train, test and target ( Survived) dataframes to feed into our models
y_train = train['Survived'].ravel()
train = train.drop(['Survived'], axis=1)
x_train = train.values # Creates an array of the train data
x_test = test.values # Creats an array of the test data
# Create our OOF train and test predictions. These base results will be used as new features
et_oof_train, et_oof_test = get_oof(et, x_train, y_train, x_test) # Extra Trees
rf_oof_train, rf_oof_test = get_oof(rf,x_train, y_train, x_test) # Random Forest
ada_oof_train, ada_oof_test = get_oof(ada, x_train, y_train, x_test) # AdaBoost
gb_oof_train, gb_oof_test = get_oof(gb,x_train, y_train, x_test) # Gradient Boost
svc_oof_train, svc_oof_test = get_oof(svc,x_train, y_train, x_test) # Support Vector Classifier
print("Training is complete")
# 特征重要性分析这块略
# Second-Level Predictions from the First-level Output
# 第二次的训练集的热力图略
# First-level output as new features
x_train = np.concatenate(( et_oof_train, rf_oof_train, ada_oof_train, gb_oof_train, svc_oof_train), axis=1)
x_test = np.concatenate(( et_oof_test, rf_oof_test, ada_oof_test, gb_oof_test, svc_oof_test), axis=1)
# Second level learning model via XGBoost
gbm = xgb.XGBClassifier(
#learning_rate = 0.02,
n_estimators= 2000,
max_depth= 4,
min_child_weight= 2,
#gamma=1,
gamma=0.9,
subsample=0.8,
colsample_bytree=0.8,
objective= 'binary:logistic',
nthread= -1,
scale_pos_weight=1).fit(x_train, y_train)
predictions = gbm.predict(x_test)
# Producing the Submission file
# Generate Submission File
StackingSubmission = pd.DataFrame({ 'PassengerId': PassengerId,
'Survived': predictions })
StackingSubmission.to_csv("StackingSubmission.csv", index=False)
数据下载地址:https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python/data
直接看程序的重点,先看看KFold的作用是什么:
from sklearn.cross_validation import KFold
kf = KFold(10000, n_folds=5, random_state=0)
print(kf)
for (train_index, test_index) in kf:
print(train_index)
print(test_index)
print("----------------")
输出:
sklearn.cross_validation.KFold(n=10000, n_folds=5, shuffle=False, random_state=0)
[2000 2001 2002 ... 9997 9998 9999]
[ 0 1 2 ... 1997 1998 1999]
----------------
[ 0 1 2 ... 9997 9998 9999]
[2000 2001 2002 ... 3997 3998 3999]
----------------
[ 0 1 2 ... 9997 9998 9999]
[4000 4001 4002 ... 5997 5998 5999]
----------------
[ 0 1 2 ... 9997 9998 9999]
[6000 6001 6002 ... 7997 7998 7999]
----------------
[ 0 1 2 ... 7997 7998 7999]
[8000 8001 8002 ... 9997 9998 9999]
----------------
根据下面的测试程序可知,n_fold=5的情况下,如果用了10000,则KFold会对10000这样处理,总共得到5个结果,可以通过for循环得到结果,分别是[2000-9999]和[0-1999],[0-1999,4000-9999]和[2000-3999],[0-3999,6000-9999]和[4000-5999],[0-5999,8000-9999]和[6000-7999],[0-7999]和[8000-9999]。后面会把这些数组作为训练集的索引来把训练集划分成两部分,把用长度长的那部分比如[2000-9999]这部分作为训练集,[0-1999]这部分重新作为测试集来预测得到一个结果。具体如何用的请看下面的get_oof函数。
def get_oof(clf, x_train, y_train, x_test):
oof_train = np.zeros((ntrain,))
oof_test = np.zeros((ntest,))
oof_test_skf = np.empty((NFOLDS, ntest))
for i, (train_index, test_index) in enumerate(kf):
x_tr = x_train[train_index]
y_tr = y_train[train_index]
x_te = x_train[test_index]
clf.train(x_tr, y_tr)
oof_train[test_index] = clf.predict(x_te)
oof_test_skf[i, :] = clf.predict(x_test)
oof_test[:] = oof_test_skf.mean(axis=0)
return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1)
上面的clf表示一种算法,函数中的kf来自于kf = KFold(ntrain, n_folds=NFOLDS, random_state=SEED),其中ntrain就是训练集的行数,这行程序也就是把训练集的索引分成了n_folds部分,也就是用来把训练集分为n_folds部分,用来在get_oof函数中进行n_folds次训练,每次训练都会有x_train的一部分参与训练,得到一个预测结果oof_train,最后每部分的预测结果是合并在一起,还有x_test参与预测,得到一个预测结果oof_test_skf,最后每次的预测结果是取平均值。
et_oof_train, et_oof_test = get_oof(et, x_train, y_train, x_test) # Extra Trees
rf_oof_train, rf_oof_test = get_oof(rf,x_train, y_train, x_test) # Random Forest
ada_oof_train, ada_oof_test = get_oof(ada, x_train, y_train, x_test) # AdaBoost
gb_oof_train, gb_oof_test = get_oof(gb,x_train, y_train, x_test) # Gradient Boost
svc_oof_train, svc_oof_test = get_oof(svc,x_train, y_train, x_test) # Support Vector Classifier
print("Training is complete")
# First-level output as new features
x_train = np.concatenate(( et_oof_train, rf_oof_train, ada_oof_train, gb_oof_train, svc_oof_train), axis=1)
x_test = np.concatenate(( et_oof_test, rf_oof_test, ada_oof_test, gb_oof_test, svc_oof_test), axis=1)
把每种算法训练得到的预测结果合并在一起作为一个新训练集和新测试集,可以想象一下,上面的x_train和x_test分别是一个5列的训练集和测试集,这个新训练集x_train是由5种算法分别对原先的训练集训练后预测了原先的训练集得到的,这个新测试集x_test是由5种算法分别对原先的训练集训练后预测了原先的测试集得到的。(有点绕口,再看看get_oof函数就能明白了)
# Second level learning model via XGBoost
gbm = xgb.XGBClassifier(
#learning_rate = 0.02,
n_estimators= 2000,
max_depth= 4,
min_child_weight= 2,
#gamma=1,
gamma=0.9,
subsample=0.8,
colsample_bytree=0.8,
objective= 'binary:logistic',
nthread= -1,
scale_pos_weight=1).fit(x_train, y_train)
predictions = gbm.predict(x_test)
上面的x_train是新训练集,y_train还是原先的训练集的label。x_test是新测试集。最终得到预测结果predictions,这个结果也就是融合后的预测结果。
参考网址:https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python/notebook 写得很好,建议看看
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/127322.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...