JAVA协同过滤推荐算法

1、什么是协同过滤在推荐系统众多方法中,基于用户的协同过滤推荐算法是最早诞生的,原理也较为简单。该算法1992年提出并用于邮件过滤系统,两年后1994年被GroupLens用于新闻过滤。一直到2000年,该算法都是推荐系统领域最著名的算法。在一个在线个性化推荐系统中,当一个用户A需要个性化推荐时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户A没有听说过的物品推荐给A。…

大家好,又见面了,我是你们的朋友全栈君。

1、什么是协同过滤

在推荐系统众多方法中,基于用户的协同过滤推荐算法是最早诞生的,原理也较为简单。该算法1992年提出并用于邮件过滤系统,两年后1994年被 GroupLens 用于新闻过滤。一直到2000年,该算法都是推荐系统领域最著名的算法。
在一个在线个性化推荐系统中,当一个用户A需要个性化推荐时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户A没有听说过的物品推荐给A。
以看电影这个例子来说,如果你喜欢《蝙蝠侠》、《碟中谍》、《星际穿越》、《源代码》等电影,另外有个人也都喜欢这些电影,而且他还喜欢《钢铁侠》,则很有可能你也喜欢《钢铁侠》这部电影。

相似度计算过程
假设目前共有4个用户: A、B、C、D;共有5个物品:a、b、c、d、e。用户与物品的关系(用户喜欢物品)如下图所示:

JAVA协同过滤推荐算法

如何一下子计算所有用户之间的相似度呢?为计算方便,通常首先需要建立“物品—用户”的倒排表,如下图所示:

JAVA协同过滤推荐算法

然后对于每个物品,喜欢他的用户,两两之间相同物品加1。例如喜欢物品 a 的用户有 A 和 B,那么在矩阵中他们两两加1。如下图所示:

JAVA协同过滤推荐算法

计算用户两两之间的相似度,上面的矩阵仅仅代表的是公式的分子部分。以余弦相似度为例,对上图进行进一步计算:

JAVA协同过滤推荐算法

到此,计算用户相似度就大功告成,可以很直观的找到与目标用户兴趣较相似的用户。

推荐物品
首先需要从矩阵中找出与目标用户 u 最相似的 K 个用户,用集合 S(u, K) 表示,将 S 中用户喜欢的物品全部提取出来,并去除 u 已经喜欢的物品。对于每个候选物品 i ,用户 u 对它感兴趣的程度用如下公式计算:
JAVA协同过滤推荐算法 
其中 rvi 表示用户 v 对 i 的喜欢程度,在本例中都是为 1,在一些需要用户给予评分的推荐系统中,则要代入用户评分。

举个例子,假设我们要给 A 推荐物品,选取 K = 3 个相似用户,相似用户则是:B、C、D,那么他们喜欢过并且 A 没有喜欢过的物品有:c、e,那么分别计算 p(A, c) 和 p(A, e):
JAVA协同过滤推荐算法 
JAVA协同过滤推荐算法 

详细内容请点击连接

https://blog.csdn.net/u013473512/article/details/78694958

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/126393.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号