堆排序算法图解详细流程(堆排序过程图解)

堆排序的时间复杂度O(N*logN),额外空间复杂度O(1),是一个不稳定性的排序目录一准备知识1.1大根堆和小根堆二堆排序基本步骤2.1构造堆2.2固定最大值再构造堆三总结四代码一准备知识堆的结构可以分为大根堆和小根堆,是一个完全二叉树,而堆排序是根据堆的这种数据结构设计的一种排序,下面先来看看什么是大根堆和小根堆1.1大根…

大家好,又见面了,我是你们的朋友全栈君。

堆排序的时间复杂度O(N*logN),额外空间复杂度O(1),是一个不稳定性的排序

目录

一 准备知识

1.1  大根堆和小根堆

二 堆排序基本步骤

2.1 构造堆

2.2 固定最大值再构造堆

三 总结

四 代码

 


一 准备知识

的结构可以分为大根堆和小根堆,是一个完全二叉树,而堆排序是根据的这种数据结构设计的一种排序,下面先来看看什么是大根堆和小根堆

1.1  大根堆和小根堆

性质:每个结点的值都大于其左孩子和右孩子结点的值,称之为大根堆;每个结点的值都小于其左孩子和右孩子结点的值,称之为小根堆。如下图

堆排序算法图解详细流程(堆排序过程图解)

 我们对上面的图中每个数都进行了标记,上面的结构映射成数组就变成了下面这个样子

堆排序算法图解详细流程(堆排序过程图解)

还有一个基本概念:查找数组中某个数的父结点和左右孩子结点,比如已知索引为i的数,那么

1.父结点索引:(i-1)/2(这里计算机中的除以2,省略掉小数)

2.左孩子索引:2*i+1

3.右孩子索引:2*i+2

所以上面两个数组可以脑补成堆结构,因为他们满足堆的定义性质:

大根堆:arr(i)>arr(2*i+1) && arr(i)>arr(2*i+2)

小根堆:arr(i)<arr(2*i+1) && arr(i)<arr(2*i+2)

二 堆排序基本步骤

基本思想:

1.首先将待排序的数组构造成一个大根堆,此时,整个数组的最大值就是堆结构的顶端

2.将顶端的数与末尾的数交换,此时,末尾的数为最大值,剩余待排序数组个数为n-1

3.将剩余的n-1个数再构造成大根堆,再将顶端数与n-1位置的数交换,如此反复执行,便能得到有序数组

2.1 构造堆

将无序数组构造成一个大根堆(升序用大根堆,降序就用小根堆)

假设存在以下数组

堆排序算法图解详细流程(堆排序过程图解)

主要思路:第一次保证0~0位置大根堆结构(废话),第二次保证0~1位置大根堆结构,第三次保证0~2位置大根堆结构…直到保证0~n-1位置大根堆结构(每次新插入的数据都与其父结点进行比较,如果插入的数比父结点大,则与父结点交换,否则一直向上交换,直到小于等于父结点,或者来到了顶端)

插入6的时候,6大于他的父结点3,即arr(1)>arr(0),则交换;此时,保证了0~1位置是大根堆结构,如下图:

堆排序算法图解详细流程(堆排序过程图解)

                                     (友情提示:待交换的数为蓝色,交换后的数为绿色)

 插入8的时候,8大于其父结点6,即arr(2)>arr(0),则交换;此时,保证了0~2位置是大根堆结构,如下图

堆排序算法图解详细流程(堆排序过程图解)

插入5的时候,5大于其父结点3,则交换,交换之后,5又发现比8小,所以不交换;此时,保证了0~3位置大根堆结构,如下图 

堆排序算法图解详细流程(堆排序过程图解)

插入7的时候,7大于其父结点5,则交换,交换之后,7又发现比8小,所以不交换;此时整个数组已经是大根堆结构 

堆排序算法图解详细流程(堆排序过程图解)

 

2.2 固定最大值再构造堆

此时,我们已经得到一个大根堆,下面将顶端的数与最后一位数交换,然后将剩余的数再构造成一个大根堆

堆排序算法图解详细流程(堆排序过程图解)

                                    (友情提示:黑色的为固定好的数字,不再参与排序) 

 此时最大数8已经来到末尾,则固定不动,后面只需要对顶端的数据进行操作即可,拿顶端的数与其左右孩子较大的数进行比较,如果顶端的数大于其左右孩子较大的数,则停止,如果顶端的数小于其左右孩子较大的数,则交换,然后继续与下面的孩子进行比较

下图中,5的左右孩子中,左孩子7比右孩子6大,则5与7进行比较,发现5<7,则交换;交换后,发现5已经大于他的左孩子,说明剩余的数已经构成大根堆,后面就是重复固定最大值,然后构造大根堆

堆排序算法图解详细流程(堆排序过程图解)

如下图:顶端数7与末尾数3进行交换,固定好7,

堆排序算法图解详细流程(堆排序过程图解)

剩余的数开始构造大根堆 ,然后顶端数与末尾数交换,固定最大值再构造大根堆,重复执行上面的操作,最终会得到有序数组

堆排序算法图解详细流程(堆排序过程图解)

 

三 总结

到这里,大家应该对堆排序都有了自己的见解,我们对上面的流程总结下:

1、首先将无需数组构造成一个大根堆(新插入的数据与其父结点比较)

2、固定一个最大值,将剩余的数重新构造成一个大根堆,重复这样的过程

四 代码

代码中主要两个方法:

1、将待排序数组构造成一个大根堆(元素上升)

2、固定一个最大值,将剩余的数再构造成一个大根堆(元素下降)

    //堆排序
    public static void heapSort(int[] arr) {
        //构造大根堆
        heapInsert(arr);
        int size = arr.length;
        while (size > 1) {
            //固定最大值
            swap(arr, 0, size - 1);
            size--;
            //构造大根堆
            heapify(arr, 0, size);

        }

    }

    //构造大根堆(通过新插入的数上升)
    public static void heapInsert(int[] arr) {
        for (int i = 0; i < arr.length; i++) {
            //当前插入的索引
            int currentIndex = i;
            //父结点索引
            int fatherIndex = (currentIndex - 1) / 2;
            //如果当前插入的值大于其父结点的值,则交换值,并且将索引指向父结点
            //然后继续和上面的父结点值比较,直到不大于父结点,则退出循环
            while (arr[currentIndex] > arr[fatherIndex]) {
                //交换当前结点与父结点的值
                swap(arr, currentIndex, fatherIndex);
                //将当前索引指向父索引
                currentIndex = fatherIndex;
                //重新计算当前索引的父索引
                fatherIndex = (currentIndex - 1) / 2;
            }
        }
    }
    //将剩余的数构造成大根堆(通过顶端的数下降)
    public static void heapify(int[] arr, int index, int size) {
        int left = 2 * index + 1;
        int right = 2 * index + 2;
        while (left < size) {
            int largestIndex;
            //判断孩子中较大的值的索引(要确保右孩子在size范围之内)
            if (arr[left] < arr[right] && right < size) {
                largestIndex = right;
            } else {
                largestIndex = left;
            }
            //比较父结点的值与孩子中较大的值,并确定最大值的索引
            if (arr[index] > arr[largestIndex]) {
                largestIndex = index;
            }
            //如果父结点索引是最大值的索引,那已经是大根堆了,则退出循环
            if (index == largestIndex) {
                break;
            }
            //父结点不是最大值,与孩子中较大的值交换
            swap(arr, largestIndex, index);
            //将索引指向孩子中较大的值的索引
            index = largestIndex;
            //重新计算交换之后的孩子的索引
            left = 2 * index + 1;
            right = 2 * index + 2;
        }

    }
    //交换数组中两个元素的值
    public static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

                                                              友情提示:手机观看,可以左右滑动 

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/125633.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 我为什么放弃Go语言

    我为什么放弃Go语言我为什么放弃Go语言?有好几次,当我想起来的时候,总是会问自己:这个决定是正确的吗?是明智和理性的吗?其实我一直在认真思考这个问题。开门见山地说,我当初放弃Go语言,就是因为两个“不爽”:第一,对Go语言本身不爽;第二,对Go语言社区里的某些人不爽。毫无疑问,这是非常主观的结论,但是我有足够详实的客观的论据。

  • node配置淘宝镜像_node配置淘宝镜像

    node配置淘宝镜像_node配置淘宝镜像node安装推荐去官网下载最新版本的,官网地址:https://nodejs.org/en/download/依照系统版本下载即可,推荐window系统下载msi格式的。下载下载直接安装下一步下一步。安装成功了以后打开cmdnode-v来检测是否安装成功cnpm安装由于我们被墙的厉害,所以使用npm下载模块时候会发现效率真的很慢,所以推荐淘宝的镜像,安装说明推荐:$npmins

  • ABP源码分析十四:Entity的设计

    ABP源码分析十四:Entity的设计

  • facade模式的好处_fa模式是什么意思

    facade模式的好处_fa模式是什么意思Facade模式使用Facade模式可以为互相关联在一起的错综复杂的类整理出高层接口(API)。其中的Facade角色可以让系统对外只有一个简单的接口(API)。而且,Facade角色还会考虑系统内部各个类之间的责任关系和依赖关系,按照正确的顺序调用各个类。示例程序示例程序类图Databasemportjava.io.FileInputStream;importjava.io….

    2022年10月25日
  • 常用的DC转DC 降压电路 MP1584EN 5V 3.3V 1.8V[通俗易懂]

    常用的DC转DC 降压电路 MP1584EN 5V 3.3V 1.8V[通俗易懂]资料参考:https://wenku.baidu.com/view/b836b110ce84b9d528ea81c758f5f61fb73628d8.html输入电压:4.5-28V输出电压:0.8-20V下图是8V-28V转5V的电路(亲测使用中)下图是4.5V-28V转1.8V参考电路下图是4.5V-28V转3.3V参考电路下图是对应不同输出电压值所调…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号