医学图像处理(医学图像处理研究生就业选择)

1.医学影像学医学影像学MedicalImaging,是研究借助于某种介质(如X射线、电磁场、超声波等)与人体相互作用,把人体内部组织器官结构、密度以影像方式表现出来,供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学图像处理两方面相对独立的研究方向。仪器主要包括X光成像仪器、CT(普…

大家好,又见面了,我是你们的朋友全栈君。

1. 医学影像学

医学影像学Medical Imaging,是研究借助于某种介质(如X射线、电磁场、超声波等)与人体相互作用,把人体内部组织器官结构、密度以影像方式表现出来,供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学图像处理两方面相对独立的研究方向。

仪器主要包括X光成像仪器、CT(普通CT、螺旋CT)、正子扫描(PET)、超声(分B超、彩色多普勒超声、心脏彩超、三维彩超)、核磁共振成像(MRI)、心电图仪器、脑电图仪器等。

课程设置包括:(1)主干学科:基础医学、临床医学、医学影像学.(2)主要课程:物理学、电子学基础、计算机原理与接口、影像设备结构与维修、医学成像技术、摄影学、人体解剖学、诊断学、内科学、影像诊断学、影像物理、超声诊断、放射诊断、核素诊断、介入放射学、核医学、医学影像解剖学、肿瘤放疗治疗学、B超诊断学。

2. MNI空间

解析:MNI空间是Montreal Neurological Institute根据一系列正常人脑的磁共振图像而建立的坐标系统。Native空间就

是原始空间,图像没有做任何变换时就是在原始空间。在这个空间中图像的维度、原点、voxel size等都是不同的,

不同被试的图像之间不具有可比性,计算出来的任何特征都不能进行统计分析,或是用于机器学习。所以必须对所有

被试的图像进行配准标准化到同一个模板上,这样所有被试的维度、原点、voxel size就一样了。使用MNI标准模板,

就表示把图像转换至MNI空间了。一般而言MNI模板是最常用的,研究的比较多。标准空间的图像也是指MNI空间的

图像。Talairach空间和MNI空间的坐标有对应的关系,很多软件都提供这个功能,比如Mricron、REST等。Talairach

空间主要是为了判别当前坐标在什么结构上,Talairach atlas and Talairach coordinates就是Stereotaxic space。

3. 脑成像数据模态 [16]

解析:脑成像数据主要有DTI、FMRI、3D三种模态。其中,DTI,3DT1是三维数据,FMRI是四维数据。

(1)DTI:Diffusion Tensor Imaging,磁共振弥散张量成像。

(2)FMRI:Functional Magnetic Resonance Imaging,功能性磁共振成像。

4. DICOM格式

解析:DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信,是医学图像和相关信息

的国际标准(ISO 12052)。它定义了质量能满足临床需要的可用于数据交换的医学图像格式。DICOM被广泛应用于

放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领

域得到越来越深入广泛的应用。在数以万计的在用医学成像设备中,DICOM是部署最为广泛的医疗信息标准之一。当

前大约有百亿级符合DICOM标准的医学图像用于临床使用。

5. 原子(原子核,电子),原子核(质子,中子)

解析:氢原子模型:电中性的原子含有一个正价的质子与一个负价的电子,被库仑定律束缚于原子核。质子和电子都

是构成物质的基本粒子。任何物质都是由原子构成的,而原子可以看作一个模型:原子核和绕原子核运动的电子。原

子核可以进一步分为质子和中子。电子带负电荷,质量非常小。质子带正电荷,其质量和中子的质量大致相等。 

6. 轨道磁矩和自旋磁矩

解析:在原子中,电子因绕原子核运动而具有轨道磁矩;电子因自旋具有自旋磁矩;原子核、质子、中子以及其它基

本粒子也都具有各自的自旋磁矩。这些对研究原子能级的精细结构,磁场中的塞曼效应以及磁共振等有重要意义,也

表明各种基本粒子具有复杂的结构。

7. 磁化强度

解析:磁化强度(M)是描述磁介质磁化状态的物理量。在国际单位制中,M的单位为安培/米。定义为媒质微小体元

ΔV内的全部分子磁矩矢量和与ΔV之比。即对于顺磁与抗磁介质,无外加磁场时,M恒为零;存在外加磁场时,如右所示:医学图像处理(医学图像处理研究生就业选择)

(1)抗磁性物质的磁化强度的大小与外磁场的大小成正比,但是方向与外磁场方向相反。

(2)顺磁性物质的磁化强度的大小与外磁场的大小成正比,而且方向与外磁场方向相同。

8. fMRI数据结构

解析:

(1)时间分辨率

(2)空间分布率

(3)结构图像:空间分辨率相对很高。

(4)功能图像:时间分辨率相对很高。

9. K空间

解析:K空间的数据分布实际上是图像空间中数据的二维傅立叶变换结果。K空间中的数据点和图像空间中的数据点并

不是一一对应的。一个K空间中的数据点对应了图像空间中所有数据点的一部分信息。事实上,K空间中的数据正是图

像空间中的数据作二维傅立叶变换的结果,也就是说,我们的“大脑图像”可以被看作是由一系列频率、相位、方向各

异的二维正弦波叠加而成的,而K空间的数据正表示了图像的正弦波组成。因此,为了理解如何从K空间中的数据变换

得到图像空间中的数据,必须首先理解傅立叶变换。 

10. MRI与fMRI

解析:

(1)MRI扫的是大脑的结构图像,也叫T1权重图像。它有着很高的空间分辨率,可以从中看到非常清晰的解剖结

构,也可以从中区分出各种不同的组织。 

(2)fMRI往往用于研究大脑的具体功能,扫出来的是功能图像,也叫做T2*权重图像。虽然它的空间分辨率比较低,

但是时间分辨率很高,可以在很短的时间内扫出一叠功能图像。这样就可以研究实验操作究竟是如何影响大脑的MRI

信号的。 

11. BOLD指数

解析:BOLD指数指的是有氧血红蛋白(Oxygenated Hemoglobin)的含量和脱氧血红蛋白(Deoxygenated 

Hemoglobin)含量的比值。 

12. BOLD原理

解析:有氧血红蛋白是抗磁性(Diamagnetic)的,脱氧血红蛋白是顺磁性(Paramagnetic)的。fMRI(T2*权重)

正是利用了血红蛋白在这两种状态下不同的磁性性质,顺磁性的脱氧血红蛋白可以增强MR的原磁场。当它的含量下

降时,BOLD fMRI信号会跟着上升。脱氧血红蛋白上升,会导致信号的下降,因为它会干扰主磁场,导致信号的衰减

加速。

13. fMRI数据预处理 

解析:数据预处理步骤包括:可视化(Visualization)、去伪影(Artifact removal)、时间配准(Slice

time correction)、头动校正(Motion correction)、生理噪音校正(Correction for physiological effect)、结构功能

配准(Co-registration)、标准化(Normalization)和时空间滤波(Spatial and temporal filtering)。

14. 现代神经影像学技术

解析:脑电图(EEG);单光子发射体层成像(SPECT);正电子发射型计算机断层显像(PET);功能性磁共振

成像(fMRI);侵入性光学成像(Invasive Optical Imaging);颅内电极记录(Intracranial Recording);脑皮层电

图(ECoG)。其中应用最为广泛的是fMRI和PET。

15. Analyze格式

解析:Analyze格式储存的每组数据组包含2个文件,一个为数据文件,其扩展名为.img,包含二进制的图像资料;另

外一个为头文件,扩展名为.hdr,包含图像的元数据。在fMRI的早期,Analyze格式最常用的格式,但现在逐渐被

NIfTI格式所取代。Analyze格式主要不足就是头文件不能真正反映元数据。      

16. NIfTI格式 

解析:标准NIfTI图像的扩展名是.nii,包含了头文件及图像资料。由于NIfTI格式和Analyze格式的关系,因此NIfTI格式

也可使用独立的图像文件(.img)和头文件(.hdr)。单独的.nii格式文件的优势就是可以用标准的压缩软件(如

gzip),而且一些分析软件包(比如FSL)可以直接读取和写入压缩的.nii文件(扩展名为.nii.gz)。

17. nilearn模块

解析:

(1)nilearn.connectome: Functional Connectivity

(2)nilearn.datasets: Automatic Dataset Fetching

(3)nilearn.decoding: Decoding

(4)nilearn.decomposition: Multivariate decompositions

(5)nilearn.image: Image processing and resampling utilities

(6)nilearn.input_data: Loading and Processing files easily

(7)nilearn.masking: Data Masking Utilities

(8)nilearn.regions: Operating on regions

(9)nilearn.mass_univariate: Mass-univariate analysis

(10)nilearn.plotting: Plotting brain data

(11)nilearn.signal: Preprocessing Time Series

说明:Nilearn是一个将机器学习、模式识别、多变量分析等技术应用于神经影像数据的应用中,能完成多体素模式分

析(MVPA:Mutli-Voxel Pattern Analysis)、解码、模型预测、构造功能连接、脑区分割、构造连接体等功能。一般

用于处理功能磁共振图像(FMRI)、静息状态(resting-state),或者基于体素的形态学分析(VBM)。对于机器学

习专家来说,Nilearn的价值体现在特定领域特定工程的构造,也就是将神经影像数据表达成为非常适合于统计学习的

特征矩阵。[17]

18. 可获取的三种磁共振信号

(1)自由感应衰减信号(FID):一般不用FID信号来重建图像,因为信号的较大幅度部分被掩盖在90度射频内;线

圈发射和接受通路之间来不及切换。

(2)自旋回波信号(SE):较为常用的也是最早用以进行磁共振图像重建的信号,只是需要多施加一次1800RF脉

冲,回波时间较长。

(3)梯度回波信号(GrE):较新的可大大缩减磁共振扫面时间的用以重建图像的信号,又称场回波。

说明:MPRAGE即快速梯度回波成像。

19. SPM和AFNI

解析:

(1)SPM:A powerful set of MATLAB functions for preprocessing, analysis, and display of fMRI and PET data. It 

is currently freely available.

(2)AFNI:A set of programs for processing, analyzing, and displaying functional MRI (fMRI) data. It runs on Unix-

based systems and is currently freely available.

20. fMRI分析的主要步骤

解析:fMRI数据分析之所以复杂是由许多因素造成的:第一,数据容易受到许多伪迹的影响,比如头动。第二,数据

中存在许多变异来源,包括个体间差异以及个体内不同时间的变异。第三,数据的维度很大,对许多惯于分析小型数

据的科学工作者们来说存在许多挑战。fMRI数据分析的主要步骤分别对应于解决上述这些问题。如下所示:

(1)质量控制:确保数据不被伪迹破坏。

(2)扭曲校正:校正fMRI图像经常发生的空间扭曲失真。

(3)头动校正:校正头动,将扫描的时间序列图像重新对准。

(4)层间时间校正:校正图像不同层之间的时间差异。

(5)空间标准化:将不同个体的数据对准到一个通用空间结构上,使得所有数据可以合并进行组分析。

(6)空间平滑:有意模糊数据以降低噪声。

(7)时间过滤:在时间维度上过滤数据,以去除低频噪声。

(8)统计建模:将统计模型拟合到观测数据,以估计任务或刺激引起的响应。

(9)统计推断:估计结果的统计显著性,对在整个大脑中进行的大量统计检验进行校正。

(10)可视化:对结果进行可视化,并估计效应量。

21. 神经元与神经系统

解析:神经元,又称神经原或神经细胞,是构成神经系统结构和功能的基本单位。神经元是具有长突起的细胞,它由

细胞体和细胞突起构成。神经系统是机体内对生理功能活动的调节起主导作用的系统,主要由神经组织组成,分为中

枢神经系统和周围神经系统两大部分。中枢神经系统又包括脑和脊髓,周围神经系统包括脑神经和脊神经。

医学图像处理(医学图像处理研究生就业选择)

22. 基于MRI标准坐标空间的三个主要坐标轴示意图

解析:在用于神经成像数据的标准空间中,X代表左/右;Y代表前/后;Z代表上/下。在数据矩阵中,一个特定的体素

可以被标记为[Xvox, Yvox, Zvox],通过这三个维度的坐标就可以确定体素的位置。如下所示:

医学图像处理(医学图像处理研究生就业选择)

23. SPM数据转换

解析:使用SPM进行数据处理前,必须先将其它档案格式转换成spm可以读取的Analyze档案格式,包含.img档和.hdr

标头档。相关的转档软件有XMedCon和MRIcro等。   

参考文献:

[1] 南方医科大学:http://course.smu.edu.cn/coursecenter/Page/SchoolSpace/Department/ShowTrainScheme.aspx?OrganizationId=41

[2] 南方医科大学精品课程”医学影像学”:http://jpkc.fimmu.com/yx/yxbf/wljc1.htm

[3] 医学影像学:http://course.jingpinke.com/details?uuid=8a833999-20a7dbd5-0120-a7dbd535-

00e7&objectId=oid:8a833999-20a7dbd5-0120-a7dbd535-00e6&courseID=S0400398

[4] 西安交通大学精品课程”医学影像学”:http://radiology.xjtu.edu.cn/

[5] 中山大学精品课程”放射诊断学/医学影像学”:http://www.360doc.com/content/13/0118/09/1509573_260853317.shtml

[6] 医学影像学:http://www.1ketang.com/course/64.html

[7] 唐都医院放射治疗科学科专业网站:http://tdradiotherapy.fmmu.edu.cn/content.aspx?id=652799609557

[8] 天津医科大学医学影像诊断学:http://tj.jingpinke.com/xpe/portal/c791a316-1271-1000-bae6-e2511f149c90?uuid=8a833996-18ac928d-0118-ac928e9c-0114&courseID=C060034

[9] 南方医科大学医学影像学:http://sns.icourses.cn/jpk/getCourseDetail.action?courseId=6987

[10] 医学影像学:http://basic.shsmu.edu.cn/jpkc/radiology/index.asp

[11] 医学影像学课程:http://netclass.csu.edu.cn/jpkc2006/xiaoji2006/fshk-jpkc06/03sb/xeh.htm

[12] 中山大学医学影像学:http://www.icourses.cn/coursestatic/course_3479.html

[13] 复旦大学医学影像学精品课程:http://jpkc.fudan.edu.cn/s/186/main.htm

[14] 影像园:http://www.xctmr.com/ppt/

[15] 杭州师范大学精品课程”医学影像学”:http://yxyxx.hznu.edu.cn/

[16] 脑成像数据的格式转换:http://blog.csdn.net/yangpengfeiblog/article/details/9197783 

[17] Nilearn库介绍:http://blog.csdn.net/jinxiaonian11/article/details/53465072

[18] Ubuntu 12.04安装FreeSurfer:http://blog.csdn.net/lj695242104/article/details/39988687

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/125609.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • JSONObject转换为JSONArray

    JSONObject转换为JSONArray一.JSONObject转JSONArray//json串内容如下{“request_id”:”1111111111112″,”audience”:[“aaa”,”bbb”],”settings”:{“ttl”:36000000,”strategy”:{“default”:3,”ios”:4}}}以com.alibaba.fastjson中的JSONAr

  • uni-app打包成安卓app步骤详解[通俗易懂]

    前置:开发环境AndroidStudio下载地址:AndroidStudio官网ORAndroidStudio中文社区HBuilderXApp离线SDK下载:最新android平台SDK下载3.1.10版本起需要申请Appkey,具体请点击链接正文:通过uni-app实现一套代码在微信小程序和安卓端app同时适配1.创建文件创建Demo文件,采用uni-app模板2.创建应用在https://dev.dcloud.net.cn/app页面创建相同名称的应用,并且获取

  • 771服务器cpu性能排行,CPU114查询网

    771服务器cpu性能排行,CPU114查询网4485083264155WQ4201954736564128225WQ2201964606764128200WQ220197392991632155WQ420198392701632105WQ4201910358722448180WQ420191333158122465WQ2201914318681224105WQ22019183067912246…

  • 机器学习-LR模型

    机器学习-LR模型LR模型,理解成一个线性方程:如果只有一个特征:也就是y=ax+b,如果有两个特征也就是y=ax1+bx2+c这里我们根据距海边的距离预测城市的最高温度。fromsklearn.linear_modelimportLinearRegressionimportnumpyasnpimportmatplotlib.pyplotaspltmodel=Line…

    2022年10月13日
  • SWOT分析和PEST分析[通俗易懂]

    SWOT分析和PEST分析[通俗易懂]1.SWOT分析定义:SWOT(StrengthsWeaknessOpportunityThreats)分析法,又称态势分析法或优劣势分析法,用来确定企业自身的竞争优势(strength)、竞争劣势(weakness)、机会(opportunity)和威胁(threat),从而将公司的战略与公司内部资源、外部环境有机地结合起来。如何用:首先要明白使用SWOT的目的,为什么要用它,用它的目的

  • 【Cubieboard2】配置编译内核支持SPI全双工通信驱动

    【Cubieboard2】配置编译内核支持SPI全双工通信驱动1,cubieboard2A20系列,无论是官方还是社区的系统,默认都是不支持SPI总线驱动的。需要重新编译配置内核,修改文件才能支持SPI全双工通信。本文以Cuieboard2Debain为例,进行讲解;2,重新编译配置内核(1)先去官网下载对应版本的linux内核源码,地址:https://github.com/linux-sunxi/linux-sunxi我下载的是sun-xi

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号