大家好,又见面了,我是你们的朋友全栈君。
欢迎点击「算法与编程之美」↑关注我们!
本文首发于微信公众号:”算法与编程之美”,欢迎关注,及时了解更多此系列文章。
1 问题描述
很多人不明白怎样用罗尔定理来证明拉格朗日中值定理。
2 问题分析
拉格朗日中值定理是以(罗尔定理)为基础更进一步的思想,也可以把罗尔定理看作拉格朗日中值定理的一个特殊情况,拉格朗日中值定理经常在题目中以不等式的证明出现。
3 解决方案
首先我们思考拉格朗日中值定理的证明
既然拉格朗日中值定理使用罗尔定理来推导出来的那我们要满足罗尔定理的条件,首先我们规定区间[a,b],之后我们要知道用什么方法来得出拉格朗日中值定理?
这里我们用到的方法是红色曲线与直线AB在[a,b]中横坐标相等纵坐标的距离来证明拉格朗日中值定理。
我们令曲线为f(x),直线AB为L(x),距离为d(x)。
首先我们要得出直线的方程用f(x)来表示由端点A,B可知直线AB的斜率为[f(b)-f(a)]/(b-a)。
再通过点斜式求得直线L(x)的方程为:L(x)=f(a)+[f(b)-f(a)/(b-a)](x-a)。
之后将曲线方程与直线方程做差得d(x)=f(x)-L(x)。
随后我们就可以用罗尔定理来证明&#
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/125493.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...