RC522(RFID模块)实践总结

此次使用RC522模块和S50卡实现近场通讯功能(开发板与RC522通讯方式为硬件SPI),就实践过程中的一些知识点进行总结:RC522模块和M1卡要点介绍;驱动代码;出现问题及解决方法;1.RC522模块和M1卡要点介绍:MFRC522简化功能框图;MFRC522与主机SPI通讯引脚配置;MFRC522与M1卡的通讯原理;M1卡存储结构与指令;MFRC522简化功能框图…

大家好,又见面了,我是你们的朋友全栈君。

此次使用RC522模块和S50卡实现近场通讯功能(开发板与RC522通讯方式为硬件SPI),就实践过程中的一些知识点进行总结:

  • RC522模块和M1卡要点介绍;
  • 驱动代码;
  • 出现问题及解决方法;

1. RC522模块和M1卡要点介绍:

  • MFRC522简化功能框图;
  • MFRC522与主机SPI通讯引脚配置;
  • MFRC522与M1卡的通讯原理和通讯流程;
  • M1卡存储结构;

MFRC522简化功能框图:

先从RC522功能框图入手,可以从大方向上理解通讯原理。
在这里插入图片描述
上述主机一般指的就是手上的开发板,通信接口对应天线,MFRC522与主机通讯支持UART、SPI以及IIC,本人采用SPI通讯方式。

MFRC522与主机SPI通讯引脚配置:

RC522(RFID模块)实践总结

MFRC522与M1卡的通讯原理和通讯流程:

工作原理:
读写器向M1卡发一组固定频率的电磁波,卡片内有一个 LC串联谐振电路,其频率与读写器发射的频率相同,在电磁波的激励下,LC谐振电路产生共振,从而使电容内有了电荷,在这个电容的另一端,接有一个单向导通的电子泵,将电容内的电荷送到另一个电容内储存,当所积累的电荷达到2V时,此电容可做为电源为其它电路提供工作电压,将卡内数据发射出去或接取读写器的数据。

通讯流程:



在这里插入图片描述

M1卡存储结构

存储结构:



在这里插入图片描述

  • 其中第0扇区的块0是用于存放厂商代码的,已经固化,不可更改,为32位(4Bytes);
  • 每个扇区的块0、块1和块2位数据块,可用于存储数据,每块16个字节(只有S50卡是这样);
  • 每个扇区的块3位控制块,包含了密码A、存取控制、密码B,具体结构如下图所示;

在这里插入图片描述

2. 驱动代码

RC522.h

#ifndef __RC522_H
#define __RC522_H 
#include "stm32f10x.h"
#include "stm32f10x_spi.h"
#include <string.h>
#include <stdio.h>
/******************************* *连线说明: *1--SDA <----->PA4 *2--SCK <----->PA5 *3--MOSI <----->PA7 *4--MISO <----->PA6 *5--悬空 *6--GND <----->GND *7--RST <----->PB0 *8--VCC <----->VCC ************************************/
//MF522命令代码
#define PCD_IDLE 0x00 //取消当前命令
#define PCD_AUTHENT 0x0E //验证密钥
#define PCD_RECEIVE 0x08 //接收数据
#define PCD_TRANSMIT 0x04 //发送数据
#define PCD_TRANSCEIVE 0x0C //发送并接收数据
#define PCD_RESETPHASE 0x0F //复位
#define PCD_CALCCRC 0x03 //CRC计算
//Mifare_One卡片命令代码
#define PICC_REQIDL 0x26 //寻天线区内未进入休眠状态
#define PICC_REQALL 0x52 //寻天线区内全部卡
#define PICC_ANTICOLL1 0x93 //防冲撞
#define PICC_ANTICOLL2 0x95 //防冲撞
#define PICC_AUTHENT1A 0x60 //验证A密钥
#define PICC_AUTHENT1B 0x61 //验证B密钥
#define PICC_READ 0x30 //读块
#define PICC_WRITE 0xA0 //写块
#define PICC_DECREMENT 0xC0 //扣款
#define PICC_INCREMENT 0xC1 //充值
#define PICC_RESTORE 0xC2 //调块数据到缓冲区
#define PICC_TRANSFER 0xB0 //保存缓冲区中数据
#define PICC_HALT 0x50 //休眠
#define DEF_FIFO_LENGTH 64 //FIFO size=64byte
#define MAXRLEN 18
//MF522寄存器定义

// PAGE 0
#define RFU00 0x00 
#define CommandReg 0x01 
#define ComIEnReg 0x02 
#define DivlEnReg 0x03 
#define ComIrqReg 0x04 
#define DivIrqReg 0x05
#define ErrorReg 0x06 
#define Status1Reg 0x07 
#define Status2Reg 0x08 
#define FIFODataReg 0x09
#define FIFOLevelReg 0x0A
#define WaterLevelReg 0x0B
#define ControlReg 0x0C
#define BitFramingReg 0x0D
#define CollReg 0x0E
#define RFU0F 0x0F
// PAGE 1 
#define RFU10 0x10
#define ModeReg 0x11
#define TxModeReg 0x12
#define RxModeReg 0x13
#define TxControlReg 0x14
#define TxAutoReg 0x15
#define TxSelReg 0x16
#define RxSelReg 0x17
#define RxThresholdReg 0x18
#define DemodReg 0x19
#define RFU1A 0x1A
#define RFU1B 0x1B
#define MifareReg 0x1C
#define RFU1D 0x1D
#define RFU1E 0x1E
#define SerialSpeedReg 0x1F
// PAGE 2 
#define RFU20 0x20 
#define CRCResultRegM 0x21
#define CRCResultRegL 0x22
#define RFU23 0x23
#define ModWidthReg 0x24
#define RFU25 0x25
#define RFCfgReg 0x26
#define GsNReg 0x27
#define CWGsCfgReg 0x28
#define ModGsCfgReg 0x29
#define TModeReg 0x2A
#define TPrescalerReg 0x2B
#define TReloadRegH 0x2C
#define TReloadRegL 0x2D
#define TCounterValueRegH 0x2E
#define TCounterValueRegL 0x2F
// PAGE 3 
#define RFU30 0x30
#define TestSel1Reg 0x31
#define TestSel2Reg 0x32
#define TestPinEnReg 0x33
#define TestPinValueReg 0x34
#define TestBusReg 0x35
#define AutoTestReg 0x36
#define VersionReg 0x37
#define AnalogTestReg 0x38
#define TestDAC1Reg 0x39 
#define TestDAC2Reg 0x3A 
#define TestADCReg 0x3B 
#define RFU3C 0x3C 
#define RFU3D 0x3D 
#define RFU3E 0x3E 
#define RFU3F 0x3F
//和RC522通讯时返回的M1卡状态
#define MI_OK 0x26
#define MI_NOTAGERR 0xcc
#define MI_ERR 0xbb
//和MF522通讯时返回的错误代码
#define SHAQU1 0X01
#define KUAI4 0X04
#define KUAI7 0X07
#define REGCARD 0xa1
#define CONSUME 0xa2
#define READCARD 0xa3
#define ADDMONEY 0xa4
#define SPI_RC522_ReadByte() SPI_RC522_SendByte(0)
#define SET_SPI_CS (GPIOF->BSRR=0X01)
#define CLR_SPI_CS (GPIOF->BRR=0X01)
#define SET_RC522RST GPIOF->BSRR=0X02
#define CLR_RC522RST GPIOF->BRR=0X02
/***********************RC522 函数宏定义**********************/
#define RC522_CS_Enable() GPIO_ResetBits ( GPIOA, GPIO_Pin_4 )
#define RC522_CS_Disable() GPIO_SetBits ( GPIOA, GPIO_Pin_4 )
#define RC522_Reset_Enable() GPIO_ResetBits( GPIOB, GPIO_Pin_0 )
#define RC522_Reset_Disable() GPIO_SetBits ( GPIOB, GPIO_Pin_0 )
#define RC522_SCK_0() GPIO_ResetBits( GPIOA, GPIO_Pin_5 )
#define RC522_SCK_1() GPIO_SetBits ( GPIOA, GPIO_Pin_5 )
#define RC522_MOSI_0() GPIO_ResetBits( GPIOA, GPIO_Pin_7 )
#define RC522_MOSI_1() GPIO_SetBits ( GPIOA, GPIO_Pin_7 )
#define RC522_MISO_GET() GPIO_ReadInputDataBit ( GPIOA, GPIO_Pin_6 )
u8       SPI_RC522_SendByte         ( u8 byte);
u8       ReadRawRC                  ( u8 ucAddress );
void     WriteRawRC                 ( u8 ucAddress, u8 ucValue );
void     SPI1_Init                  ( void );
void     RC522_Handel               ( void );
void     RC522_Init                 ( void );                       //初始化
void     PcdReset                   ( void );                       //复位
void     M500PcdConfigISOType       ( u8 type );                    //工作方式
char     PcdRequest                 ( u8 req_code, u8 * pTagType ); //寻卡
char     PcdAnticoll                ( u8 * pSnr);                   //防冲撞
void     PcdAntennaOn               ( void );                 //开启天线
void     PcdAntennaOff              ( void );                 //关闭天线
void     SetBitMask                 ( u8 ucReg, u8 ucMask );
void     ClearBitMask               ( u8 ucReg, u8 ucMask );
char     PcdSelect                  ( u8 * pSnr );            //选择卡片
char     PcdAuthState               ( u8 ucAuth_mode, u8 ucAddr, u8 * pKey, u8 * pSnr );                                              //验证密码
char     PcdWrite                   ( u8 ucAddr, u8 * pData );
char     PcdRead                    ( u8 ucAddr, u8 * pData );
void     ShowID                     ( u16 x,u16 y, u8 *p, u16 charColor, u16 bkColor);	 //显示卡的卡号,以十六进制显示
char             PcdHalt            ( void );           //命令卡片进入休眠状态
void             CalulateCRC                ( u8 * pIndata, u8 ucLen, u8 * pOutData );
#endif

RC522.c

#include "rc522.h"
#include "./SysTick/bsp_SysTick.h"
#include "./usart/bsp_usart.h"
#include "stm32f10x_spi.h"
// M1卡分为16个扇区,每个扇区由四个块(块0、块1、块2、块3)组成
// 将16个扇区的64个块按绝对地址编号为:0~63
// 第0个扇区的块0(即绝对地址0块),用于存放厂商代码,已经固化不可更改 
// 每个扇区的块0、块1、块2为数据块,可用于存放数据
// 每个扇区的块3为控制块(绝对地址为:块3、块7、块11.....)包括密码A,存取控制、密码B等
/******************************* *连线说明: *1--SDA <----->PA4 *2--SCK <----->PA5 *3--MOSI <----->PA7 *4--MISO <----->PA6 *5--悬空 *6--GND <----->GND *7--RST <----->PB0 *8--VCC <----->VCC ************************************/
#define RC522_DELAY() delay_us( 2 ) 
/*全局变量*/
unsigned char CT[2];            //卡类型
unsigned char SN[4];            //卡号
unsigned char RFID[16];			    //存放RFID 
unsigned char lxl_bit=0;
unsigned char card1_bit=0;
unsigned char card2_bit=0;
unsigned char card3_bit=0;
unsigned char card4_bit=0;
unsigned char total=0;
unsigned char lxl[4]={ 
196,58,104,217};
unsigned char card_1[4]={ 
83,106,11,1};
unsigned char card_2[4]={ 
208,121,31,57};
unsigned char card_3[4]={ 
176,177,143,165};
unsigned char card_4[4]={ 
5,158,10,136};
u8 KEY[6]={ 
0xff,0xff,0xff,0xff,0xff,0xff};
u8 AUDIO_OPEN[6] = { 
0xAA, 0x07, 0x02, 0x00, 0x09, 0xBC};
unsigned char RFID1[16]={ 
0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x07,0x80,0x29,0xff,0xff,0xff,0xff,0xff,0xff};
/*函数声明*/
unsigned char status;
unsigned char s=0x08;
/* 函数名:RC522_Init * 描述 :初始化RC522配置 * 输入 :无 * 返回 : 无 * 调用 :外部调用 */
void RC522_Init ( void )
{ 

SPI1_Init(); 
RC522_Reset_Disable();	      //将RST置高,启动内部复位阶段;
PcdReset ();                  //复位RC522 
PcdAntennaOff();              //关闭天线
RC522_DELAY();                //delay 1ms
PcdAntennaOn();               //打开天线
M500PcdConfigISOType ( 'A' ); //设置工作方式
}
/* 函数名:SPI1_Init * 描述 :初始化SPI1的配置 * 输入 :无 * 返回 : 无 * 调用 :外部调用 */
void SPI1_Init (void)	
{ 

SPI_InitTypeDef  SPI_InitStructure; 
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE );//PORTB时钟使能 
// CS
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;	 
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
GPIO_Init(GPIOA, &GPIO_InitStructure);					 //根据设定参数初始化PF0、PF1
// SCK
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;	 
GPIO_Init(GPIOA, &GPIO_InitStructure);
// MISO
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;	 
GPIO_Init(GPIOA, &GPIO_InitStructure);
// MOSI
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;	 
GPIO_Init(GPIOA, &GPIO_InitStructure);
// RST
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;	 
GPIO_Init(GPIOB, &GPIO_InitStructure);
//置高CS口
RC522_CS_Disable();
//其他SPI1配置
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;            //全双工;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;                                //主机模式;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;                            //传输数据为8位;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;                                   //时钟极性CPOL为空闲时低电平;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;                                 //时钟采样点为时钟奇数沿(上升沿);
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;                                    //NSS引脚由软件改变;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;          //预分频系数64;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;                           //MSB先行模式;
SPI_InitStructure.SPI_CRCPolynomial = 7;                                     //CRC校验;
//初始化SPI1
SPI_Init(SPI1 , &SPI_InitStructure);
//使能SPI1
SPI_Cmd(SPI1 , ENABLE); 
}
/* 函数名:PcdRese * 描述 :复位RC522 * 输入 :无 * 返回 : 无 * 调用 :外部调用 */
void PcdReset ( void )
{ 

RC522_Reset_Disable();
delay_us ( 1 );
RC522_Reset_Enable();
delay_us ( 1 );
RC522_Reset_Disable();
delay_us ( 1 );
WriteRawRC ( CommandReg, 0x0f );
while ( ReadRawRC ( CommandReg ) & 0x10 );
delay_us ( 1 );
WriteRawRC ( ModeReg, 0x3D );                //定义发送和接收常用模式 和Mifare卡通讯,CRC初始值0x6363
WriteRawRC ( TReloadRegL, 30 );              //16位定时器低位 
WriteRawRC ( TReloadRegH, 0 );			     //16位定时器高位
WriteRawRC ( TModeReg, 0x8D );				 //定义内部定时器的设置
WriteRawRC ( TPrescalerReg, 0x3E );			 //设置定时器分频系数
WriteRawRC ( TxAutoReg, 0x40 );				 //调制发送信号为100%ASK 
}
/* 函数名:SPI_RC522_SendByte * 描述 :向RC522发送1 Byte 数据 * 输入 :byte,要发送的数据 * 返回 : RC522返回的数据 * 调用 :内部调用 */
u8 SPI_RC522_SendByte ( u8 byte )
{ 

while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);         
SPI_I2S_SendData(SPI1, byte);                     
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET); 
return 	SPI_I2S_ReceiveData(SPI1);
}
/* 函数名:ReadRawRC * 描述 :读RC522寄存器 * 输入 :ucAddress,寄存器地址 * 返回 : 寄存器的当前值 * 调用 :内部调用 */
u8 ReadRawRC ( u8 ucAddress )
{ 

u8 ucAddr, ucReturn;
ucAddr = ( ( ucAddress << 1 ) & 0x7E ) | 0x80;      
RC522_CS_Enable();
SPI_RC522_SendByte ( ucAddr );
ucReturn = SPI_RC522_ReadByte ();
RC522_CS_Disable();
return ucReturn;
}
/* 函数名:WriteRawRC * 描述 :写RC522寄存器 * 输入 :ucAddress,寄存器地址 、 ucValue,写入寄存器的值 * 返回 : 无 * 调用 :内部调用 */
void WriteRawRC ( u8 ucAddress, u8 ucValue )
{ 
  
u8 ucAddr;
ucAddr = ( ucAddress << 1 ) & 0x7E;   
RC522_CS_Enable();	
SPI_RC522_SendByte ( ucAddr );
SPI_RC522_SendByte ( ucValue );
RC522_CS_Disable();	
}
/* 函数名:M500PcdConfigISOType * 描述 :设置RC522的工作方式 * 输入 :ucType,工作方式 * 返回 : 无 * 调用 :外部调用 */
void M500PcdConfigISOType ( u8 ucType )
{ 

if ( ucType == 'A')                     //ISO14443_A
{ 

ClearBitMask ( Status2Reg, 0x08 );		
WriteRawRC ( ModeReg, 0x3D );//3F 
WriteRawRC ( RxSelReg, 0x86 );//84
WriteRawRC ( RFCfgReg, 0x7F );   //4F
WriteRawRC ( TReloadRegL, 30 );//tmoLength);// TReloadVal = 'h6a =tmoLength(dec) 
WriteRawRC ( TReloadRegH, 0 );
WriteRawRC ( TModeReg, 0x8D );
WriteRawRC ( TPrescalerReg, 0x3E );
delay_us   ( 2 );
PcdAntennaOn ();//开天线
}
}
/* * 函数名:SetBitMask * 描述 :对RC522寄存器置位 * 输入 :ucReg,寄存器地址 * ucMask,置位值 * 返回 : 无 * 调用 :内部调用 */
void SetBitMask ( u8 ucReg, u8 ucMask )  
{ 

u8 ucTemp;
ucTemp = ReadRawRC ( ucReg );
WriteRawRC ( ucReg, ucTemp | ucMask );         // set bit mask
}
/* 函数名:ClearBitMask * 描述 :对RC522寄存器清位 * 输入 :ucReg,寄存器地址 * ucMask,清位值 * 返回 : 无 * 调用 :内部调用 */
void ClearBitMask ( u8 ucReg, u8 ucMask )  
{ 

u8 ucTemp;
ucTemp = ReadRawRC ( ucReg );
WriteRawRC ( ucReg, ucTemp & ( ~ ucMask) );  // clear bit mask
}
/* 函数名:PcdAntennaOn * 描述 :开启天线 * 输入 :无 * 返回 : 无 * 调用 :内部调用 */
void PcdAntennaOn ( void )
{ 

u8 uc;
uc = ReadRawRC ( TxControlReg );
if ( ! ( uc & 0x03 ) )
SetBitMask(TxControlReg, 0x03);
}
/* 函数名:PcdAntennaOff * 描述 :开启天线 * 输入 :无 * 返回 : 无 * 调用 :内部调用 */
void PcdAntennaOff ( void )
{ 

ClearBitMask ( TxControlReg, 0x03 );
}
void ShowID(u16 x,u16 y, u8 *p, u16 charColor, u16 bkColor)  //显示卡的卡号,以十六进制显示
{ 

u8 num[9];
printf("ID>>>%s\r\n", num);
}
/* 函数名:PcdComMF522 * 描述 :通过RC522和ISO14443卡通讯 * 输入 :ucCommand,RC522命令字 * pInData,通过RC522发送到卡片的数据 * ucInLenByte,发送数据的字节长度 * pOutData,接收到的卡片返回数据 * pOutLenBit,返回数据的位长度 * 返回 : 状态值 * = MI_OK,成功 * 调用 :内部调用 */
char PcdComMF522 ( u8 ucCommand, u8 * pInData, u8 ucInLenByte, u8 * pOutData, u32 * pOutLenBit )		
{ 

char cStatus = MI_ERR;
u8 ucIrqEn   = 0x00;
u8 ucWaitFor = 0x00;
u8 ucLastBits;
u8 ucN;
u32 ul;
switch ( ucCommand )
{ 

case PCD_AUTHENT:		//Mifare认证
ucIrqEn   = 0x12;		//允许错误中断请求ErrIEn 允许空闲中断IdleIEn
ucWaitFor = 0x10;		//认证寻卡等待时候 查询空闲中断标志位
break;
case PCD_TRANSCEIVE:		//接收发送 发送接收
ucIrqEn   = 0x77;		//允许TxIEn RxIEn IdleIEn LoAlertIEn ErrIEn TimerIEn
ucWaitFor = 0x30;		//寻卡等待时候 查询接收中断标志位与 空闲中断标志位
break;
default:
break;
}
WriteRawRC ( ComIEnReg, ucIrqEn | 0x80 );		//IRqInv置位管脚IRQ与Status1Reg的IRq位的值相反 
ClearBitMask ( ComIrqReg, 0x80 );			//Set1该位清零时,CommIRqReg的屏蔽位清零
WriteRawRC ( CommandReg, PCD_IDLE );		//写空闲命令
SetBitMask ( FIFOLevelReg, 0x80 );			//置位FlushBuffer清除内部FIFO的读和写指针以及ErrReg的BufferOvfl标志位被清除
for ( ul = 0; ul < ucInLenByte; ul ++ )
WriteRawRC ( FIFODataReg, pInData [ ul ] );    		//写数据进FIFOdata
WriteRawRC ( CommandReg, ucCommand );					//写命令
if ( ucCommand == PCD_TRANSCEIVE )
SetBitMask(BitFramingReg,0x80);  				//StartSend置位启动数据发送 该位与收发命令使用时才有效
ul = 1000;//根据时钟频率调整,操作M1卡最大等待时间25ms
do 														//认证 与寻卡等待时间 
{ 

ucN = ReadRawRC ( ComIrqReg );							//查询事件中断
ul --;
} while ( ( ul != 0 ) && ( ! ( ucN & 0x01 ) ) && ( ! ( ucN & ucWaitFor ) ) );		//退出条件i=0,定时器中断,与写空闲命令
ClearBitMask ( BitFramingReg, 0x80 );					//清理允许StartSend位
if ( ul != 0 )
{ 

if ( ! (( ReadRawRC ( ErrorReg ) & 0x1B )) )			//读错误标志寄存器BufferOfI CollErr ParityErr ProtocolErr
{ 

cStatus = MI_OK;
if ( ucN & ucIrqEn & 0x01 )					//是否发生定时器中断
cStatus = MI_NOTAGERR;   
if ( ucCommand == PCD_TRANSCEIVE )
{ 

ucN = ReadRawRC ( FIFOLevelReg );			//读FIFO中保存的字节数
ucLastBits = ReadRawRC ( ControlReg ) & 0x07;	//最后接收到得字节的有效位数
if ( ucLastBits )
* pOutLenBit = ( ucN - 1 ) * 8 + ucLastBits;   	//N个字节数减去1(最后一个字节)+最后一位的位数 读取到的数据总位数
else
* pOutLenBit = ucN * 8;   					//最后接收到的字节整个字节有效
if ( ucN == 0 )	
ucN = 1;    
if ( ucN > MAXRLEN )
ucN = MAXRLEN;   
for ( ul = 0; ul < ucN; ul ++ )
pOutData [ ul ] = ReadRawRC ( FIFODataReg );   
}		
}
else
cStatus = MI_ERR;   
}
SetBitMask ( ControlReg, 0x80 );           // stop timer now
WriteRawRC ( CommandReg, PCD_IDLE ); 
return cStatus;
}
/* 函数名:PcdRequest * 描述 :寻卡 * 输入 :ucReq_code,寻卡方式 * = 0x52,寻感应区内所有符合14443A标准的卡 * = 0x26,寻未进入休眠状态的卡 * pTagType,卡片类型代码 * = 0x4400,Mifare_UltraLight * = 0x0400,Mifare_One(S50) * = 0x0200,Mifare_One(S70) * = 0x0800,Mifare_Pro(X)) * = 0x4403,Mifare_DESFire * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdRequest ( u8 ucReq_code, u8 * pTagType )
{ 

char cStatus;  
u8 ucComMF522Buf [ MAXRLEN ]; 
u32 ulLen;
ClearBitMask ( Status2Reg, 0x08 );	//清理指示MIFARECyptol单元接通以及所有卡的数据通信被加密的情况
WriteRawRC ( BitFramingReg, 0x07 );	// 发送的最后一个字节的 七位
SetBitMask ( TxControlReg, 0x03 );	//TX1,TX2管脚的输出信号传递经发送调制的13.56的能量载波信号
ucComMF522Buf [ 0 ] = ucReq_code;		//存入 卡片命令字
cStatus = PcdComMF522 ( PCD_TRANSCEIVE,	ucComMF522Buf, 1, ucComMF522Buf, & ulLen );	//寻卡 
if ( ( cStatus == MI_OK ) && ( ulLen == 0x10 ) )	//寻卡成功返回卡类型 
{ 
    
* pTagType = ucComMF522Buf [ 0 ];
* ( pTagType + 1 ) = ucComMF522Buf [ 1 ];
}
else
cStatus = MI_ERR;
return cStatus;
}
/* 函数名:PcdAnticoll * 描述 :防冲撞 * 输入 :pSnr,卡片序列号,4字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdAnticoll ( u8 * pSnr )
{ 

char cStatus;
u8 uc, ucSnr_check = 0;
u8 ucComMF522Buf [ MAXRLEN ]; 
u32 ulLen;
ClearBitMask ( Status2Reg, 0x08 );		//清MFCryptol On位 只有成功执行MFAuthent命令后,该位才能置位
WriteRawRC ( BitFramingReg, 0x00);		//清理寄存器 停止收发
ClearBitMask ( CollReg, 0x80 );			//清ValuesAfterColl所有接收的位在冲突后被清除
ucComMF522Buf [ 0 ] = 0x93;	//卡片防冲突命令
ucComMF522Buf [ 1 ] = 0x20;
cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 2, ucComMF522Buf, & ulLen);//与卡片通信
if ( cStatus == MI_OK)		//通信成功
{ 

for ( uc = 0; uc < 4; uc ++ )
{ 

* ( pSnr + uc )  = ucComMF522Buf [ uc ];			//读出UID
ucSnr_check ^= ucComMF522Buf [ uc ];
}
if ( ucSnr_check != ucComMF522Buf [ uc ] )
cStatus = MI_ERR;    
}
SetBitMask ( CollReg, 0x80 );
return cStatus;
}
/* 函数名:PcdSelect * 描述 :选定卡片 * 输入 :pSnr,卡片序列号,4字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdSelect ( u8 * pSnr )
{ 

char ucN;
u8 uc;
u8 ucComMF522Buf [ MAXRLEN ]; 
u32  ulLen;
ucComMF522Buf [ 0 ] = PICC_ANTICOLL1;
ucComMF522Buf [ 1 ] = 0x70;
ucComMF522Buf [ 6 ] = 0;
for ( uc = 0; uc < 4; uc ++ )
{ 

ucComMF522Buf [ uc + 2 ] = * ( pSnr + uc );
ucComMF522Buf [ 6 ] ^= * ( pSnr + uc );
}
CalulateCRC ( ucComMF522Buf, 7, & ucComMF522Buf [ 7 ] );
ClearBitMask ( Status2Reg, 0x08 );
ucN = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 9, ucComMF522Buf, & ulLen );
if ( ( ucN == MI_OK ) && ( ulLen == 0x18 ) )
ucN = MI_OK;  
else
ucN = MI_ERR;    
return ucN; 
}
/* 函数名:CalulateCRC * 描述 :用RC522计算CRC16 * 输入 :pIndata,计算CRC16的数组 * ucLen,计算CRC16的数组字节长度 * pOutData,存放计算结果存放的首地址 * 返回 : 无 * 调用 :内部调用 */
void CalulateCRC ( u8 * pIndata, u8 ucLen, u8 * pOutData )
{ 

u8 uc, ucN;
ClearBitMask(DivIrqReg,0x04);
WriteRawRC(CommandReg,PCD_IDLE);
SetBitMask(FIFOLevelReg,0x80);
for ( uc = 0; uc < ucLen; uc ++)
WriteRawRC ( FIFODataReg, * ( pIndata + uc ) );   
WriteRawRC ( CommandReg, PCD_CALCCRC );
uc = 0xFF;
do { 

ucN = ReadRawRC ( DivIrqReg );
uc --;} 
while ( ( uc != 0 ) && ! ( ucN & 0x04 ) );
pOutData [ 0 ] = ReadRawRC ( CRCResultRegL );
pOutData [ 1 ] = ReadRawRC ( CRCResultRegM );
}
/* 函数名:PcdAuthState * 描述 :验证卡片密码 * 输入 :ucAuth_mode,密码验证模式 * = 0x60,验证A密钥 * = 0x61,验证B密钥 * u8 ucAddr,块地址 * pKey,密码 * pSnr,卡片序列号,4字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdAuthState ( u8 ucAuth_mode, u8 ucAddr, u8 * pKey, u8 * pSnr )
{ 

char cStatus;
u8 uc, ucComMF522Buf [ MAXRLEN ];
u32 ulLen;
ucComMF522Buf [ 0 ] = ucAuth_mode;
ucComMF522Buf [ 1 ] = ucAddr;
for ( uc = 0; uc < 6; uc ++ )
ucComMF522Buf [ uc + 2 ] = * ( pKey + uc );   
for ( uc = 0; uc < 6; uc ++ )
ucComMF522Buf [ uc + 8 ] = * ( pSnr + uc );   
cStatus = PcdComMF522 ( PCD_AUTHENT, ucComMF522Buf, 12, ucComMF522Buf, & ulLen );
if ( ( cStatus != MI_OK ) || ( ! ( ReadRawRC ( Status2Reg ) & 0x08 ) ) ){ 

cStatus = MI_ERR; 
}
return cStatus;    
}
/* 函数名:PcdWrite * 描述 :写数据到M1卡一块 * 输入 :u8 ucAddr,块地址 * pData,写入的数据,16字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdWrite ( u8 ucAddr, u8 * pData )
{ 

char cStatus;
u8 uc, ucComMF522Buf [ MAXRLEN ];
u32 ulLen;
ucComMF522Buf [ 0 ] = PICC_WRITE;
ucComMF522Buf [ 1 ] = ucAddr;
CalulateCRC ( ucComMF522Buf, 2, & ucComMF522Buf [ 2 ] );
cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 4, ucComMF522Buf, & ulLen );
if ( ( cStatus != MI_OK ) || ( ulLen != 4 ) || ( ( ucComMF522Buf [ 0 ] & 0x0F ) != 0x0A ) )
cStatus = MI_ERR;   
if ( cStatus == MI_OK )
{ 

memcpy(ucComMF522Buf, pData, 16);
for ( uc = 0; uc < 16; uc ++ )
ucComMF522Buf [ uc ] = * ( pData + uc );  
CalulateCRC ( ucComMF522Buf, 16, & ucComMF522Buf [ 16 ] );
cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 18, ucComMF522Buf, & ulLen );
if ( ( cStatus != MI_OK ) || ( ulLen != 4 ) || ( ( ucComMF522Buf [ 0 ] & 0x0F ) != 0x0A ) )
cStatus = MI_ERR;   
} 
return cStatus;
}
/* 函数名:PcdRead * 描述 :读取M1卡一块数据 * 输入 :u8 ucAddr,块地址 * pData,读出的数据,16字节 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdRead ( u8 ucAddr, u8 * pData )
{ 

char cStatus;
u8 uc, ucComMF522Buf [ MAXRLEN ]; 
u32 ulLen;
ucComMF522Buf [ 0 ] = PICC_READ;
ucComMF522Buf [ 1 ] = ucAddr;
CalulateCRC ( ucComMF522Buf, 2, & ucComMF522Buf [ 2 ] );
cStatus = PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 4, ucComMF522Buf, & ulLen );
if ( ( cStatus == MI_OK ) && ( ulLen == 0x90 ) )
{ 

for ( uc = 0; uc < 16; uc ++ )
* ( pData + uc ) = ucComMF522Buf [ uc ];   
}
else
cStatus = MI_ERR;   
return cStatus;
}
/* 函数名:PcdHalt * 描述 :命令卡片进入休眠状态 * 输入 :无 * 返回 : 状态值 * = MI_OK,成功 * 调用 :外部调用 */
char PcdHalt( void )
{ 

u8 ucComMF522Buf [ MAXRLEN ]; 
u32  ulLen;
ucComMF522Buf [ 0 ] = PICC_HALT;
ucComMF522Buf [ 1 ] = 0;
CalulateCRC ( ucComMF522Buf, 2, & ucComMF522Buf [ 2 ] );
PcdComMF522 ( PCD_TRANSCEIVE, ucComMF522Buf, 4, ucComMF522Buf, & ulLen );
return MI_OK;   
}

3. 出现问题及解决方法:

本人在尝试读取卡片的时候也遇到了一个问题,调试过好几天硬件和软件后,还是不能寻到卡,keil单步调试一直表示寻卡返回状态参数为:MI_ERR,最后终于调试成功,错误原因在于开发板坏了……
不过在找错误的过程中也寻找了一些其他人调试失败的原因,引以为鉴:

  1. 硬件问题:这种情况一般出现在自己设计PCB的童鞋身上,那么这时候就应该先购买现成模块,在调试完代码并成功的基础上再调试硬件;
  2. SPI传输速率设置问题:SPI口例程中的预分频默认为4,而RC522中的SPI最高速率为10MHz/S,计算可知,预分频指数至少为8,所以适当升高预分频数,据反馈,预分频为8也容易出错,所以建议32或者64甚至为256;
  3. SPI时序问题:根据文档中的时序图,仔细设置SPI_InitStructure.SPI_CPOL和SPI_InitStructure.SPI_CPHA这两个参数;
  4. SPI口的GPIO模式设置:我以前在设计TM1638芯片为核心的灯、按键模组时也出现过这个问题,后来一般全部设置为推挽输出就基本不在出现这个问题;
  5. 天线在复位时需要先关闭再开启;
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/125364.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 搭建pycharm环境_pycharm怎么配置anaconda环境

    搭建pycharm环境_pycharm怎么配置anaconda环境首先要创建一个项目,创建项目的同时,pycharm默认会顺带创建一个虚拟环境(如果你没修改默认配置的话)。点击终端,如果前面有个(venv)就是使用的虚拟环境了。接下来我们安装pyside6,在终端中输入并执行以下命令:pipinstallpyside6安装完成后配置拓展工具,需要用到的2个工具是pyside6-uic和pyside6-designerpyside6-designer是调用pyside6模块内附带的qtdesigner在Linux中其位

  • 深入浅出:hadoop分布式文件存储系统(HDFS)

    深入浅出:hadoop分布式文件存储系统(HDFS)分布式文件存储系统如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;SecondaryNameNode:是一个小弟,分担大哥namenode的一部分工作量;是Na…

  • 软件安装 —— 使用官方ODT定制安装Office

    软件安装 —— 使用官方ODT定制安装Office前言正在MacOS11的BigSur如火如荼的宣传着,我这不争气的Windows系统也终于越看越是臃肿,做为生产力工具,第一还是要稳定精简,一气之下,直接换上了Windows特别版本LTSC,据说这个版本特别特别稳定,很长时间才会更新一次,但用过的都说好,想想还是激动的。重装系统是一个重大工程,那做为Windows第二重要的软件Office目前的安装模式要么官方下载安装包要么离线部署,而官方的安装包可谓是一键超级全家桶搬进C盘,有用的没用的全部装一遍,最终还是靠离线部署来安装了,可以定制想要的软件,还

  • mysql 主键自增语句_MySQL 自增主键[通俗易懂]

    mysql 主键自增语句_MySQL 自增主键[通俗易懂]以下仅考虑InnoDB存储引擎。自增主键有两个性质需要考虑:单调性每次插入一条数据,其ID都是比上一条插入的数据的ID大,就算上一条数据被删除。连续性插入成功时,其数据的ID和前一次插入成功时数据的ID相邻。自增主键的单调性为何会有单调性的问题?这主要跟自增主键最大值的获取方式,以及存放位置有关系。如果最大值是通过计算获取的,并且在某些情况下需要重新获取时,会因为最新的数据被删…

  • 【剑指offer】删除字符也出现在一个字符串

    【剑指offer】删除字符也出现在一个字符串

  • 什么是Linux内核版本_linux内核深度解析

    什么是Linux内核版本_linux内核深度解析Linux内核版本有两种:稳定版和开发版,Linux内核版本号由3个数字组成:r.x.yr:目前发布的内核主版本。x:偶数表示稳定版本;奇数表示开发中版本。y:错误修补的次数。内核版本号每位都代表什么?以版本号为例:2.6.9-5.ELsmp,r:2,主版本号x:6,次版本号,表示稳定版本y:9,修订版本号,表示修改的次数头两个数字合在一齐可以描述内核系列。如…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号