Tensor和NumPy相互转换「建议收藏」

Tensor和NumPy相互转换我们很容易用numpy()和from_numpy()将Tensor和NumPy中的数组相互转换。但是需要注意的一点是:这两个函数所产生的Tensor和NumPy中的数组共享相同的内存(所以他们之间的转换很快),改变其中一个时另一个也会改变!1.Tensor转NumPya=torch.ones(6)b=a.numpy()print(a,b)a+=1print(a,b)b+=1print(a,b)tensor([1.,1.

大家好,又见面了,我是你们的朋友全栈君。

Tensor和NumPy相互转换

我们很容易用numpy()from_numpy()Tensor和NumPy中的数组相互转换。但是需要注意的一点是: 这两个函数所产生的TensorNumPy中的数组共享相同的内存(所以他们之间的转换很快),改变其中一个时另一个也会改变!

1. Tensor转NumPy

a = torch.ones(6)
b = a.numpy()
print(a, b)

a += 1
print(a, b)
b += 1
print(a, b)
tensor([1., 1., 1., 1., 1., 1.]) [1. 1. 1. 1. 1. 1.]
tensor([2., 2., 2., 2., 2., 2.]) [2. 2. 2. 2. 2. 2.]
tensor([3., 3., 3., 3., 3., 3.]) [3. 3. 3. 3. 3. 3.]

2. NumPy数组转Tensor

import numpy as np
a = np.ones(7)
b = torch.from_numpy(a)
print(a, b)

a += 1
print(a, b)
b += 1
print(a, b)
[1. 1. 1. 1. 1. 1. 1.] tensor([1., 1., 1., 1., 1., 1., 1.], dtype=torch.float64)
[2. 2. 2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2., 2., 2.], dtype=torch.float64)
[3. 3. 3. 3. 3. 3. 3.] tensor([3., 3., 3., 3., 3., 3., 3.], dtype=torch.float64)

3. torch.tensor()将NumPy数组转换成Tensor

直接用torch.tensor()NumPy数组转换成Tensor,该方法总是会进行数据拷贝,返回的Tensor和原来的数据不再共享内存。

import numpy as np
a = np.ones((2,3))
c = torch.tensor(a)
a += 1
print('a:',a)
print('c:',c)
print(id(a)==id(c))
a: [[2. 2. 2.]
 [2. 2. 2.]]
c: tensor([[1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
False
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/125276.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号