两向量的夹角_两向量垂直的夹角是多少

两向量的夹角_两向量垂直的夹角是多少计算两个向量间的夹角

大家好,又见面了,我是你们的朋友全栈君。

怎么计算两个向量间的夹角呢?

这里主要分两种情况,对于二维向量和三维向量来分别讨论。

1. 二维向量

二维向量的情况相对简单,根据向量间的点乘关系

v1v2=||v1||||v2||cosθ



可以得到:


θ=acos(v1v2/||v1||||v2||)



如果调用C/C++数学库函数acos,计算得到的结果的取值范围在

[0,π]

这里得到的夹角并不在0到360度之间(或者-180到180度),也就是说得到的结果并不能告诉我们 v1 v2 前面或者 v1 v2 后面,考虑到atan2函数可以用来计算出角度准确处于哪一个象限,可以用atan2来计算夹角。
计算从v2到v1的夹角公式:

θ=atan2(v2.y,v2.x)atan2(v1.y,v1.x)

需要注意的是:atan2的取值范围是 [π,π] ,在进行相减之后得到的夹角是在 [2π,2π] ,因此当得到的结果大于 π 时,对结果减去 2π ,当结果小于 π 时,对结果加上 2π

2. 三维向量

2.1 使用旋转轴和旋转角的方式

旋转角可以使用上面讨论的方式得到:

θ=acos(v1v2/||v1||||v2||)



旋转轴是两个向量的叉乘向量,长度是

||v1||||v2||sin(θ)


需要注意的是在acos取值在0度和180度这两个特殊值的时候,要注意一下,当两个向量夹角是0度或者180度的时候,它们是平行的关系(同向或者反向),当夹角是0度时,旋转轴可以是任意轴,因为根本就没有旋转。当夹角是180度的时候,旋转轴只要和向量呈90度夹角即可,可以有无穷多个可能的选择轴。

2.2 使用四元数的方式

使用四元数来旋转一个向量,使用下面的方式:
p2 = q * p1 * conj(q)
其中:
p2 是旋转之后的向量
p1是旋转之前的向量
q是用来旋转的四元数
在这里知道p2和p1,用来求解四元数还是相当麻烦的。因此一个比较好的思路仍然是使用上面旋转轴和旋转角的方式,不过将结论转换成四元数罢了。
关于转换的方式,可以参考我写的另外一篇文章《旋转变换(三)四元数》

参考文献:

  1. Maths – Angle between vectors
  2. Maths – Trigonometry – Inverse trig functions
  3. Maths – Issues with Relative Angles
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/125181.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号