h5py快速入门指南

h5py是Python语言用来操作HDF5的模块。下面的文章主要介绍h5py的快速使用入门,翻译自h5py的官方文档:http://docs.h5py.org/en/latest/quick.html。该翻译仅为个人学习h5py为目的,如有翻译不当之处,请速联系读者或提供其它好的翻译。安装使用Anaconda或者Miniconda:condainstallh5py用Enthou…

大家好,又见面了,我是你们的朋友全栈君。

h5py是Python语言用来操作HDF5的模块。下面的文章主要介绍h5py的快速入门指南,翻译自h5py的官方文档:http://docs.h5py.org/en/latest/quick.html 。该翻译仅为个人学习h5py为目的,如有翻译不当之处,请速联系笔者或提供正确的翻译,非常感谢!

安装

使用Anaconda或者Miniconda:

conda install h5py

Enthought Canopy,可以使用GUI安装包安装或用

enpkg h5py

安装。用pip或setup.py安装,请参考安装方式

核心概念

一个HDF5文件就是一个容器,用于储存两类对象:datasets,类似于数组的数据集合;groups,类似于文件夹的容器,可以储存datasets和其它groups。当使用h5py时,最基本的准则为:

groups类似于字典(dictionaries),dataset类似于Numpy中的数组(arrays)。

假设有人给你发送了一个HDF5文件, mytestfile.hdf5(如何创建这个文件,请参考:附录:创建一个文件).首先你需要做的就是打开这个文件用于读取数据:

>>> import h5py
>>> f = h5py.File('mytestfile.hdf5', 'r')

这个File对象是你的起点。那么这个文件中储存了什么呢?记住,h5py.File就像一个Python字典,因此我们可以查看这些键值,

>>> list(f.keys())
['mydataset']

根据我们的观察,这个文件中有一个dataset,即mydataset. 让我们把这个dataset作为Dataset对象来检验

>>> dset = f['mydataset']

我们得到的这个对象不是一个数组,而是一个HDF5 dataset. 就像Numpy中的数据那样,datasets有形状(shape)和数据类型(data type)

>>> dset.shape
(100,)
>>> dset.dtype
dtype('int32')

同时它们也支持数组风格的切片操作。下面是你如何完成这个文件中的一个dataset的读写的方法

>>> dset[...] = np.arange(100)
>>> dset[0]
0
>>> dset[10]
10
>>> dset[0:100:10]
array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

想要更多参考,请前往File ObjectsDatasets.

附录:创建一个文件

此时此刻,你也许会好奇mytestdata.hdf5是如何创建的。当File对象初始化后,我们通过将模式(mode)设置为w来创建一个文件。其它模式(mode)为a(用于读、写、新建)和r+(用于读、写)。一个完整的File模式以及它们的含义的列表可参考File对象

>>> import h5py
>>> import numpy as np
>>> f = h5py.File("mytestfile.hdf5", "w")

File对象有几个看上去挺有趣的方法。其一为create_dataset,顾名思义,就是通过给定形状和数据类型来创建一个dataset

>>> dset = f.create_dataset("mydataset", (100,), dtype='i')

File对象是上下文管理器,因此,下面的代码也可运行

>>> import h5py
>>> import numpy as np
>>> with h5py.File("mytestfile.hdf5", "w") as f:
>>>     dset = f.create_dataset("mydataset", (100,), dtype='i')

Groups和分层结构

“HDF”是“Hierarchical Data Format”的缩写。每个HDF5文件中的对象都有一个名字(name),它们以类似于POSIX风格的分层结构存放,用/分隔符分隔

>>> dset.name
u'/mydataset'

在这个系统中“文件夹”(folders)被命名为groups. 我们创建的File对象本身也是一个group, 在这种情形下是根group(root group),名字为/:

>>> f.name
u'/'

创建一个子group(subgroup)可以通过一个巧妙的命令create_group来完成。但是,我们首先需要以读/写模式来打开文件

>>> f = h5py.File('mydataset.hdf5', 'r+')
>>> grp = f.create_group("subgroup")

所有Group对象,如同File对象一样,也有create_*方法:

>>> dset2 = grp.create_dataset("another_dataset", (50,), dtype='f')
>>> dset2.name
u'/subgroup/another_dataset'

顺便说一句,你不需要手动地创建所有的中间groups. 指定一个完整的路径同样可行

>>> dset3 = f.create_dataset('subgroup2/dataset_three', (10,), dtype='i')
>>> dset3.name
u'/subgroup2/dataset_three'

Groups支持大部分的Python字典风格的接口。你可以使用条目获取(item-retrieval)的语法来获取这个文件中的对象:

>>> dataset_three = f['subgroup2/dataset_three']

迭代一个group,就会产生它的成员的名字:

>>> for name in f:
...     print name
mydataset
subgroup
subgroup2

成员关系检测也可以通过使用名字来实现:

>>> "mydataset" in f
True
>>> "somethingelse" in f
False

你甚至可以使用完整的路径的名字:

>>> "subgroup/another_dataset" in f
True

它也有你熟悉的keys(), values(), items() 和iter() 的方法,以及get()方法。

因为迭代一个group只会产生它的直属成员,所以想要迭代一个完整的文件,可以使用Group的方法visit()和visititems(), 它们通过一个调用(callable)来实现:

>>> def printname(name):
...     print name
>>> f.visit(printname)
mydataset
subgroup
subgroup/another_dataset
subgroup2
subgroup2/dataset_three

想要更多参考,请前往Groups.

属性

HDF5的最好特征之一就是你可以在描述的数据后储存元数据(metadata)。所有的groups和datasets都支持几个数据位的附属命名,称为属性。(All groups and datasets support attached named bits of data called attributes.)

属性可以通过attrs这个代理对象来获取,这会再一次执行字典接口:

>>> dset.attrs['temperature'] = 99.5
>>> dset.attrs['temperature']
99.5
>>> 'temperature' in dset.attrs
True

想要更多参考,请前往Attributes.

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/124968.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号