hadoop生态系统的详细介绍-详细一点[通俗易懂]

前提日常喜欢看一些微信分享的好文,总结下来,可以作为过滤器吧(节约更多人的时间!),在这里引用的是别人的文章!对原文的作者表示感谢!确实写的很好!hadoop生态系统的详细介绍简介Hadoop是一个开发和运行处理大规模数据的软件平台,是Appach的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。今天我们来详细介绍下hadoop的生态系统。Hadoop生态…

大家好,又见面了,我是你们的朋友全栈君。

前提


日常喜欢看一些微信分享的好文,总结下来,可以作为过滤器吧(节约更多人的时间!),在这里引用的是别人的文章!对原文的作者表示感谢!确实写的很好!

hadoop生态系统的详细介绍


简介


Hadoop是一个开发和运行处理大规模数据的软件平台,是Appach的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。今天我们来详细介绍下hadoop的生态系统。

Hadoop生态系统概况


Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。 
Hadoop的核心是HDFS和MapReduce,hadoop2.0还包括YARN。 
下图为hadoop的生态系统: 
hadoop生态系统的详细介绍-详细一点[通俗易懂]

HDFS(Hadoop分布式文件系统)


源自于Google的GFS论文,发表于2003年10月,HDFS是GFS克隆版。 
是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。 
HDFS主要有以下几个部分组成:

  1. Client:切分文件;访问HDFS;与NameNode交互,获取文件位置信息;与DataNode交互,读取和写入数据。
  2. NameNode:Master节点,在hadoop1.X中只有一个,管理HDFS的名称空间和数据块映射信息,配置副本策略,处理客户端请求。对于大型的集群来讲,Hadoop1.x存在两个最大的缺陷: 
    • 1)对于大型的集群,namenode的内存成为瓶颈,namenode的扩展性的问题;
    • 2)namenode的单点故障问题。
    • 针对以上的两个缺陷,Hadoop2.x以后分别对这两个问题进行了解决。
    • 对于缺陷1)提出了Federation namenode来解决,该方案主要是通过多个namenode来实现多个命名空间来实现namenode的横向扩张。从而减轻单个namenode内存问题。
    • 针对缺陷2),hadoop2.X提出了实现两个namenode实现热备HA的方案来解决。其中一个是处于standby状态,一个处于active状态。
  3. DataNode:Slave节点,存储实际的数据,汇报存储信息给NameNode。
  4. Secondary NameNode:辅助NameNode,分担其工作量;定期合并fsimage和edits,推送给NameNode;紧急情况下,可辅助恢复NameNode,但Secondary NameNode并非NameNode的热备。 
    目前,在硬盘不坏的情况,我们可以通过secondarynamenode来实现namenode的恢复。

Mapreduce(分布式计算框架)


源自于google的MapReduce论文,发表于2004年12月,Hadoop MapReduce是google MapReduce 克隆版。MapReduce是一种计算模型,用以进行大数据量的计算。其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。 
MapReduce计算框架发展到现在有两个版本的MapReduce的API,针对MR1主要组件有以下几个部分组成: 
(1)JobTracker:Master节点,只有一个,主要任务是资源的分配和作业的调度及监督管理,管理所有作业,作业/任务的监控、错误处理等;将任务分解成一系列任务,并分派给TaskTracker。 
(2)TaskTracker:Slave节点,运行Map Task和Reduce Task;并与JobTracker交互,汇报任务状态。 
(3)Map Task:解析每条数据记录,传递给用户编写的map(),并执行,将输出结果写入本地磁盘。 
(4)Reducer Task:从Map Task的执行结果中,远程读取输入数据,对数据进行排序,将数据按照分组传递给用户编写的reduce函数执行。 
在这个过程中,有一个shuffle过程,对于该过程是理解MapReduce计算框架是关键。该过程包含map函数输出结果到reduce函数输入这一个中间过程中所有的操作,称之为shuffle过程。在这个过程中,可以分为map端和reduce端。

Map端:

1) 输入数据进行分片之后,分片的大小跟原始的文件大小、文件块的大小有关。每一个分片对应的一个map任务。 
2) map任务在执行的过程中,会将结果存放到内存当中,当内存占用达到一定的阈值(这个阈值是可以设置的)时,map会将中间的结果写入到本地磁盘上,形成临时文件这个过程叫做溢写。 
3) map在溢写的过程中,会根据指定reduce任务个数分别写到对应的分区当中,这就是partition过程。每一个分区对应的是一个reduce任务。并且在写的过程中,进行相应的排序。在溢写的过程中还可以设置conbiner过程,该过程跟reduce产生的结果应该是一致的,因此该过程应用存在一定的限制,需要慎用。 
4) 每一个map端最后都只存在一个临时文件作为reduce的输入,因此会对中间溢写到磁盘的多个临时文件进行合并Merge操作。最后形成一个内部分区的一个临时文件。

Reduce端:

1) 首先要实现数据本地化,需要将远程节点上的map输出复制到本地。 
2) Merge过程,这个合并过程主要是对不同的节点上的map输出结果进行合并。 
3) 不断的复制和合并之后,最终形成一个输入文件。Reduce将最终的计算结果存放在HDFS上。 
针对MR2是新一代的MR的API。其主要是运行在Yarn的资源管理框架上。

Yarn(资源管理框架)


YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

YARN的基本思想是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建一个全局的ResourceManager(RM)和若干个针对应用程序的ApplicationMaster(AM)。这里的应用程序是指传统的MapReduce作业或作业的DAG(有向无环图)。

该框架是hadoop2.x以后对hadoop1.x之前JobTracker和TaskTracker模型的优化,而产生出来的,将JobTracker的资源分配和作业调度及监督分开。该框架主要有ResourceManager,Applicationmatser,nodemanager。其主要工作过程如下:

  • ResourceManager主要负责所有的应用程序的资源分配,
  • ApplicationMaster主要负责每个作业的任务调度,也就是说每一个作业对应一个ApplicationMaster。
  • Nodemanager是接收Resourcemanager 和ApplicationMaster的命令来实现资源的分配执行体。

ResourceManager在接收到client的作业提交请求之后,会分配一个Conbiner,这里需要说明一下的是Resoucemanager分配资源是以Conbiner为单位分配的。第一个被分配的Conbiner会启动Applicationmaster,它主要负责作业的调度。Applicationmanager启动之后则会直接跟NodeManager通信。 
在YARN中,资源管理由ResourceManager和NodeManager共同完成,其中,ResourceManager中的调度器负责资源的分配,而NodeManager则负责资源的供给和隔离。ResourceManager将某个NodeManager上资源分配给任务(这就是所谓的“资源调度”)后,NodeManager需按照要求为任务提供相应的资源,甚至保证这些资源应具有独占性,为任务运行提供基础的保证,这就是所谓的资源隔离。 
在Yarn平台上可以运行多个计算框架,如:MR,Tez,Storm,Spark等计算,框架。

Sqoop(数据同步工具)


Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之间传输数据。数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。其中主要利用的是MP中的Map任务来实现并行导入,导出。Sqoop发展到现在已经出现了两个版本,一个是sqoop1.x.x系列,一个是sqoop1.99.X系列。对于sqoop1系列中,主要是通过命令行的方式来操作。

  • sqoop1 import原理:从传统数据库获取元数据信息(schema、table、field、field type),把导入功能转换为只有Map的Mapreduce作业,在mapreduce中有很多map,每个map读一片数据,进而并行的完成数据的拷贝。
  • sqoop1 export原理:获取导出表的schema、meta信息,和Hadoop中的字段match;多个map only作业同时运行,完成hdfs中数据导出到关系型数据库中。
  • Sqoop1.99.x是属于sqoop2的产品,该款产品目前功能还不是很完善,处于一个测试阶段,一般并不会应用于商业化产品当中。

Mahout(数据挖掘算法库)


Mahout起源于2008年,最初是Apache Lucent的子项目,它在极短的时间内取得了长足的发展,现在是Apache的顶级项目。相对于传统的MapReduce编程方式来实现机器学习的算法时,往往需要话费大量的开发时间,并且周期较长,而Mahout的主要目标是创建一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。 
Mahout现在已经包含了聚类、分类、推荐引擎(协同过滤)和频繁集挖掘等广泛使用的数据挖掘方法。除了算法,Mahout还包含数据的输入/输出工具、与其他存储系统(如数据库、MongoDB 或Cassandra)集成等数据挖掘支持架构。 
mahout的各个组件下面都会生成相应的jar包。此时我们需要明白一个问题:到底如何使用mahout呢? 
  实际上,mahout只是一个机器学习的算法库,在这个库当中是想了相应的机器学习的算法,如:推荐系统(包括基于用户和基于物品的推荐),聚类和分类算法。并且这些算法有些实现了MapReduce,spark从而可以在hadoop平台上运行,在实际的开发过程中,只需要将相应的jar包即可。 
  

Hbase(分布式列存数据库)


源自Google的Bigtable论文,发表于2006年11月,传统的关系型数据库是对面向行的数据库。HBase是Google Bigtable克隆版,HBase是一个针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。和传统关系数据库不同,HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。 
Hbase表的特点

  • 大:一个表可以有数十亿行,上百万列;
  • 无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态的增加,同一张表中不同的行可以有截然不同的列;
  • 面向列:面向列(族)的存储和权限控制,列(族)独立检索;
  • 稀疏:空(null)列并不占用存储空间,表可以设计的非常稀疏;
  • 数据多版本:每个单元中的数据可以有多个版本,默认情况下版本号自动分配,是单元格插入时的时间戳;
  • 数据类型单一:Hbase中的数据都是字符串,没有类型。 
    Hbase物理模型 
    每个column family存储在HDFS上的一个单独文件中,空值不会被保存。 
    Key 和 Version number在每个 column family中均有一份; 
    HBase 为每个值维护了多级索引,即:”key, column family, column name, timestamp”,其物理存储:

    1. Table中所有行都按照row key的字典序排列;
    2. Table在行的方向上分割为多个Region;
    3. Region按大小分割的,每个表开始只有一个region,随着数据增多,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region,之后会有越来越多的region;
    4. Region是Hbase中分布式存储和负载均衡的最小单元,不同Region分布到不同RegionServer上。、
    5. Region虽然是分布式存储的最小单元,但并不是存储的最小单元。Region由一个或者多个Store组成,每个store保存一个columns family;每个Strore又由一个memStore和0至多个StoreFile组成,StoreFile包含HFile;memStore存储在内存中,StoreFile存储在HDFS上。

Zookeeper(分布式协作服务)


源自Google的Chubby论文,发表于2006年11月,Zookeeper是Chubby克隆版,主要解决分布式环境下的数据管理问题:统一命名,状态同步,集群管理,配置同步等。 
Zookeeper的主要实现两步:

  • 选举Leader
  • 同步数据。这个组件在实现namenode的HA高可用性的时候,需要用到。

Pig(基于Hadoop的数据流系统)


由yahoo!开源,设计动机是提供一种基于MapReduce的ad-hoc(计算在query时发生)数据分析工具 
定义了一种数据流语言—Pig Latin,将脚本转换为MapReduce任务在Hadoop上执行。通常用于进行离线分析。

Hive(基于Hadoop的数据仓库)


由facebook开源,最初用于解决海量结构化的日志数据统计问题。 
Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。

Flume(日志收集工具)


Cloudera开源的日志收集系统,具有分布式、高可靠、高容错、易于定制和扩展的特点。 

它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。总的来说,Flume是一个可扩展、适合复杂环境的海量日志收集系统。

Oozie


在Hadoop中执行的任务有时候需要把多个Map/Reduce作业连接到一起,这样才能够达到目的。在Hadoop生态圈中,有一种相对比较新的组件叫做Oozie,它让我们可以把多个Map/Reduce作业组合到一个逻辑工作单元中,从而完成更大型的任务。

Oozie是一种Java Web应用程序,它运行在Java servlet容器——即Tomcat——中,并使用数据库来存储以下内容:

  1、工作流定义

  2、当前运行的工作流实例,包括实例的状态和变量

Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。我们会使用hPDL(一种XML流程定义语言)来描述这个图。

Spark


Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。

Tez


    Tez是一个针对Hadoop数据处理应用程序的新分布式执行框架。Tez是Apache最新的支持DAG作业的开源计算框架,它可以将多个有依赖的作业转换为一个作业从而大幅提升DAG作业的性能。Tez并不直接面向最终用户——事实上它允许开发者为最终用户构建性能更快、扩展性更好的应用程序。Hadoop传统上是一个大量数据批处理平台。但是,有很多用例需要近乎实时的查询处理性能。还有一些工作则不太适合MapReduce,例如机器学习。Tez的目的就是帮助Hadoop处理这些用例场景。
    Tez项目的目标是支持高度定制化,这样它就能够满足各种用例的需要,让人们不必借助其他的外部方式就能完成自己的工作,如果 Hive和 Pig 这样的项目使用Tez而不是MapReduce作为其数据处理的骨干,那么将会显著提升它们的响应时间。Tez构建在YARN之上,后者是Hadoop所使用的新资源管理框架。

Storm


    Storm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。 Storm也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。 
    Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm用于实时处理,就好比 Hadoop 用于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。更棒的是你可以使用任意编程语言来做开发。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/124619.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • c++中sqrt函数的使用

    c++中sqrt函数的使用sqrt使用时大多需要要强制类型转化,因为sqrt只支持double和float类型,可以这样c=(int)sqrt((double)a*a+b*b);或者c=(int)sqrt((float)a*a+b*b);

  • 可重入锁和不可重入锁的区别

    可重入锁和不可重入锁的区别不可重入锁示例(同一个线程不可以重入上锁后的代码段)如下是一个不可重入锁的逻辑过程,会发现执行main方法控制台会打印执行doJob方法前,然后就会一直线程阻塞,不会打印执行doJob方法过程中,原因在于第一次上锁后,由于没有释放锁,因此执行第一次lock后isLocked=true,这个时候调用doJob()内部又一次调用了lock()由于上个线程将isLocked=true,导致再次进入的时候就进入死循环。导致线程无法执行System.out.println(“执行doJob方法过程中”);这

  • 保存并退出vi的命令_vim退出并保存

    保存并退出vi的命令_vim退出并保存vi(vim)是上Linux非常常用的代码编辑器,很多Linux发行版都默认安装了vi(vim)。vi(vim)命令繁多但是如果使用灵活之后将会大大提高效率。vi是“visualinterface”的缩写,vim是viIMproved(增强版的vi)。在一般的系统管理维护中vi就够用,如果想使用代码加亮的话可以使用vim基本上vi可以分为三种状态,分别是命令模式(commandmode)、插…

  • Git分支管理策略

    Git分支管理策略

    2021年10月23日
  • maven配置多仓库镜像「建议收藏」

    maven配置多仓库镜像「建议收藏」问题场景:1、国内访问maven默认远程中央镜像特别慢2、用阿里的镜像替代远程中央镜像3、大部分jar包都可以在阿里镜像中找到,部分jar包在阿里镜像中没有,需要单独配置镜像我想达到的目标:在maven中配置一主一副两个镜像,大部分jar直接通过主镜像可以找到,部分特殊jar在主镜像中找不到时,自动去副镜像中寻找。我所处的阶段:修改了maven的全局配置文件settin…

  • Linux抓包命令tcpdump以及常见抓包使用方法[通俗易懂]

    Linux抓包命令tcpdump以及常见抓包使用方法[通俗易懂]系统运行过程中,难免发现服务器一些流量异常或访问异常,我们可以采用tcpdump命令进行抓包。下边简单介绍下该命令使用办法。1,安装tcpdump一些系统默认没有安装,我们需要yum安装下这个命令:yuminstalltcpdump-y2,tcpdump使用。一些使用我们可以tcpdump–help看下帮助,比如:常用的一些简单用法,一般是抓取对应网卡、端口、对应IP等。tcpdump-nn本地网卡地址以及外部链接地址,并采用IP地址、端口表示。如果不加-nn则会…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号