常用模块(模块初步了解)

常用模块及功能说明:模块功能详解collections模块1.namedtuple:生成可以使用名字来访问元素内容的tuple我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以

大家好,又见面了,我是你们的朋友全栈君。

常用模块及功能说明:

<span role="heading" aria-level="2">常用模块(模块初步了解)

模块功能详解

collections模块

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

>>> p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

 
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2

似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

#namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x','r'])

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

队列:先进先出(FIFO:first  in  first  out)  排队购物 

栈:先进后出     取出已经折叠存放好的衣服  

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
>>> q.pop()
>>> q.popleft() deque(['y', 'a', 'b', 'c', 'x'])

3.Counter: 计数器,主要用来计数  只能用来操作字符串

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
其他详细内容 http://www.cnblogs.com/Eva-J/articles/7291842.htm

4.OrderedDict: 有序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

复制代码
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
复制代码

意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

5.defaultdict: 带有默认值的字典

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

即: {
'k1'
: 大于
66 

'k2'
: 小于
66
}
方法一:原生字典解决方法
values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
    if value>66:
        if my_dict.has_key('k1'):
            my_dict['k1'].append(value)
        else:
            my_dict['k1'] = [value]
    else:
        if my_dict.has_key('k2'):
            my_dict['k2'].append(value)
        else:
            my_dict['k2'] = [value]

方法二  default字典解决方法

from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
    if value>66:
        my_dict['k1'].append(value)
    else:
        my_dict['k2'].append(value)

  使dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'

 time模块

和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块:import  time

常用方法
A  time.sleep(secs) (线程)推迟指定的时间运行。
单位为秒。

B. time.time() 获取当前时间戳

表示时间的三种方式

在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:

(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

时间戳是计算机能够识别的时间

(2)格式化的时间字符串(Format String): ‘1999-12-06’

时间字符串是人能够看懂的时间

%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身

 (3)结构化时间:(struct_time) :struct_time是一个元组,这个元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)

元组则是用来操作时间(计算)的

索引(Index) 属性(Attribute) 值(Values)
0 tm_year(年) 比如2011
1 tm_mon(月) 1 – 12
2 tm_mday(日) 1 – 31
3 tm_hour(时) 0 – 23
4 tm_min(分) 0 – 59
5 tm_sec(秒) 0 – 61
6 tm_wday(weekday) 0 – 6(0表示周日)
7 tm_yday(一年中的第几天) 1 – 366
8 tm_isdst(是否是夏令时) 默认为-1

我们先导入time模块,来认识一下python中表示时间的几种格式:

#导入时间模块
>>>import time

#时间戳
>>>time.time()
1500875844.800804

#时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04'

#时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
          tm_hour=13, tm_min=59, tm_sec=37, 
                 tm_wday=0, tm_yday=205, tm_isdst=0)

时间格式之间的转化

<span role="heading" aria-level="2">常用模块(模块初步了解)

#时间戳-->结构化时间
#time.gmtime(时间戳)    #UTC时间,与英国伦敦当地时间一致
#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 
>>>time.gmtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
>>>time.localtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)

#结构化时间-->时间戳 
#time.mktime(结构化时间)
>>>time_tuple = time.localtime(1500000000)
>>>time.mktime(time_tuple)
1500000000.0
#结构化时间-->字符串时间
#time.strftime("格式定义","结构化时间")  结构化时间参数若不传,则现实当前时间
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 14:55:36'
>>>time.strftime("%Y-%m-%d",time.localtime(1500000000))
'2017-07-14'

#字符串时间-->结构化时间
#time.strptime(时间字符串,字符串对应格式)
>>>time.strptime("2017-03-16","%Y-%m-%d")
time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)
>>>time.strptime("07/24/2017","%m/%d/%Y")
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)

<span role="heading" aria-level="2">常用模块(模块初步了解)

#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime(1500000000))
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017'

#%a %d %d %H:%M:%S %Y串 --> 结构化时间
#time.ctime(时间戳)  如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime(1500000000)
'Fri Jul 14 10:40:00 2017' 

计算时间差

import time
true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
dif_time=time_now-true_time
struct_time=time.gmtime(dif_time)
print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,
                                       struct_time.tm_mday-1,struct_time.tm_hour,
                                       struct_time.tm_min,struct_time.tm_sec))

随机数random模块

>>> import random
#随机小数
>>> random.random()      # 大于0且小于1之间的小数
0.7664338663654585
>>> random.uniform(1,3) #大于1小于3的小数
1.6270147180533838

#随机整数
>>> random.randint(1,5)  # 大于等于1且小于等于5之间的整数
>>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数


#随机选择一个返回接收可迭代的
>>> random.choice([1,'23',[4,5]])  # #1或者23或者[4,5]
#随机选择多个返回,返回的个数为函数的第二个参数
>>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合
[[4, 5], '23']


#打乱列表顺序
>>> item=[1,3,5,7,9]
>>> random.shuffle(item) # 打乱次序
>>> item
[5, 1, 3, 7, 9]
>>> random.shuffle(item)
>>> item
[5, 9, 7, 1, 3]

生成随机验证码:

import random
def v_code():
    code = ''
    for i in range(5):
        num=random.randint(0,9)
        ALF=chr(random.randint(65,90))     #生成大写字母
     alf=chr(random.randint(97,122)) #生成小写字母 add=random.choice([num,alf]) code="".join([code,str(add)]) return code print(v_code())

os模块

os模块是与操作系统交互的一个接口

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
os.curdir  返回当前目录: ('.')
os.pardir  获取当前目录的父目录字符串名:('..')
os.makedirs('dirname1/dirname2')    可生成多层递归目录
os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove()  删除一个文件
os.rename("oldname","newname")  重命名文件/目录
os.stat('path/filename')  获取文件/目录信息
os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command")  运行shell命令,直接显示
os.popen("bash command)  运行shell命令,获取执行结果
os.environ  获取系统环境变量

os.path
os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。
                        即os.path.split(path)的第二个元素
os.path.exists(path)  如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path)  如果path是绝对路径,返回True
os.path.isfile(path)  如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path)  如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]])  将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path)  返回path所指向的文件或者目录的最后访问时间
os.path.getmtime(path)  返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小

os模块的方法和作用

stat 结构:获取文件/目录信息 的结构说明

st_mode: inode 保护模式
st_ino: inode 节点号。
st_dev: inode 驻留的设备。
st_nlink: inode 的链接数。
st_uid: 所有者的用户ID。
st_gid: 所有者的组ID。
st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。
st_atime: 上次访问的时间。
st_mtime: 最后一次修改的时间。
st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间

sys模块

sys模块是与python解释器交互的一个接口

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

1 sys.argv           命令行参数List,第一个元素是程序本身路径
2 sys.exit(n)        退出程序,正常退出时exit(0),错误退出sys.exit(1)
3 sys.version        获取Python解释程序的版本信息
4 sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
5 sys.platform       返回操作系统平台名称

sys常用方法

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

1 import sys
2 try:
3     sys.exit(1)
4 except SystemExit as e:
5     print(e)

异常处理和status

序列化模块

将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

序列化的目的

1、以某种存储形式使自定义
对象持久化
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。
<span role="heading" aria-level="2">常用模块(模块初步了解)

序列化的方法

 1: json

Json模块提供了四个功能:dumps、dump、loads、load

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic)  #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的

dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2)  #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}


list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

loads和dumps

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()

f = open('json_file')
dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)

load和dump

ensure_ascii关键字参数

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()

示例

2:json & pickle 模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

 json模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表…可以把python中任意的数据类型序列化

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic)  #一串二进制内容

dic2 = pickle.loads(str_dic)
print(dic2)    #字典

import time
struct_time  = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()

f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

picle方法

json和picle的区别和运用场景

json是一种所有的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle

3: shelve

shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'}  #直接对文件句柄操作,就可以存入数据
f.close()

import shelve
f1 = shelve.open('shelve_file')
existing = f1['key']  #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)

shelve示例

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

shelve只读

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存

<span role="heading" aria-level="2">常用模块(模块初步了解)
<span role="heading" aria-level="2">常用模块(模块初步了解)

import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close()

f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()

设置write back

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/124529.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • ubuntu14.04源代码安装postgresql 9.1

    ubuntu14.04源代码安装postgresql 9.1

  • 中国程序员的悲哀

    中国程序员的悲哀
    中国程序员有个很悲哀的地方,大多数程序都对微软崇拜有加,奉若神明;然而大多数人都用着盗版的微软操作系统,盗版的visualstudio,然后还牛逼哄哄的出个什么微软vs使用心得。在他们眼里软件本身并不是商品,软件衍生出来的服务才能赚钱。
     
    这就好比几个小偷偷了别人的手机,然后交流用什么方法销赃才能最赚钱,你会觉得小偷太无耻了。但是如果满大街都是小偷,那你就会习以为常了。这么一想,发觉中国的程序员是抛开道德观念的,一心研究技术的。
     
    但是这不能怪程序员

  • 还原对于服务器失败 备份集中的数据库备份与现有数据库不同

    还原对于服务器失败 备份集中的数据库备份与现有数据库不同还原对于服务器失败备份集中的数据库备份与现有数据库不同    今天在SQLServer2008R2中还原一个数据库备份,遇到错误。还原对于服务器失败备份集中的数据库备份与现有数据库不同。    解决方案有以下几种,一般能够成功:在恢复新建数据库时,没有选中“覆盖原数据库”。    解决方法:选中用于还原的备份集,在选项中,勾选“覆盖现有数据库”

  • pycharm最新激活码(注册激活)「建议收藏」

    (pycharm最新激活码)本文适用于JetBrains家族所有ide,包括IntelliJidea,phpstorm,webstorm,pycharm,datagrip等。https://javaforall.cn/100143.htmlIntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,上面是详细链接哦~S…

  • numpy笔记_python numpy array

    numpy笔记_python numpy array初识ndarry

  • QXDM打印高通sensor 日志问题总结

    QXDM打印高通sensor 日志问题总结在使用QXDM打印高通sensor日志的时候,经常会发现有些赋予已经权限很高的log居然打印不出来,这就个代码的追踪带来了一系列困难,鉴于此,我研究了一下高通中log打印问题,给大家今后的使用带来一些经验。在高通的关于日志的头文件定义中,许多日志是默认不打开的,研究代码:#if(BUILD_DRAGON_BOARD)&&(DEBUG_DATA)#defineLSM6DSM_DATA_M

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号