tensorflow中常用激活函数和损失函数

激活函数各激活函数曲线对比常用激活函数:tf.sigmoid()tf.tanh()tf.nn.relu()tf.nn.softplus()tf.nn.softmax()tf.nn.dr

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

激活函数

各激活函数曲线对比

常用激活函数:

tf.sigmoid()

tf.tanh()

tf.nn.relu()

tf.nn.softplus()

tf.nn.softmax()

tf.nn.dropout()

tf.nn.elu()
import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import derivative
def sigmoid(x):
    y = 1 / (1 + np.exp(-x))
    return y
def tanh(x):
    return (np.exp(x) - np.exp(-x)) / (np.exp(x)+np.exp(-x))
def relu(x):
    return [max(xi,0) for xi in x]
def elu(x,a=1):
    y = []
    for xi in x:
        if xi >= 0:
            y.append(xi)
        else:
            y.append(a*(np.exp(xi)-1))
    return y
def softplus(x):
    return np.log(1+np.exp(x))
def derivative_f(func,input,dx=1e-6):
    y = [derivative(func,x,dx) for x in input]
    return y
x = np.linspace(-5,5,1000)

flg = plt.figure(figsize=(15,5))
ax1 = flg.add_subplot(1,2,1)
ax1.axis([-5,5,-1,1])
plt.xlabel(r'active function',fontsize=18)
ax1.plot(x,sigmoid(x),'r-',label='sigmoid')
ax1.plot(x,tanh(x),'g--',label='tanh')
ax1.plot(x,relu(x),'b-',lw=1,label='relu')
ax1.plot(x,softplus(x),'y--',label='softplus')
ax1.plot(x,elu(x),'b--',label='elu')
ax1.legend()
ax2 = flg.add_subplot(1,2,2)
plt.xlabel(r'derivative',fontsize=18)
ax2.plot(x,derivative_f(sigmoid,x),'r-',label='sigmoid')
ax2.plot(x,derivative_f(tanh,x),'g--',label='tanh')
ax2.plot(x,derivative_f(softplus,x),'y-',label='softplus')
ax2.legend()
plt.show()

tensorflow中常用激活函数和损失函数

各激活函数优缺点

sigmoid函数

优点:在于输出映射在(0,1)范围内,单调连续,适合用作输出层,求导容易

缺点:一旦输入落入饱和区,一阶导数接近0,就可能产生梯度消失的情况

tanh函数

优点:输出以0为中心,收敛速度比sigmoid函数要快

缺点:存在梯度消失问题

relu函数

优点:目前最受欢迎的激活函数,在x<0时,硬饱和,在x>0时,导数为1,所以在x>0时保持梯度不衰减,从而可以缓解梯度消失的问题,能更快收敛,并提供神经网络的稀疏表达能力

缺点:随着训练的进行,部分输入或落入硬饱和区,导致无法更新权重,称为‘神经元死亡’

elu函数

优点:有一个非零梯度,这样可以避免单元消失的问题

缺点:计算速度比relu和它的变种慢,但是在训练过程中可以通过更快的收敛速度来弥补

softplus函数

该函数对relu做了平滑处理,更接近脑神经元的激活模型

softmax函数

除了用于二分类还可以用于多分类,将各个神经元的输出映射到(0,1空间)

dropout函数

tf.nn.dropout(x,keep_prob,noise_shape=None,seed=None,name=None)

一个神经元以概率keep_prob决定是否被抑制,如果被抑制,神经元的输出为0,如果不被抑制,该神经元将被放大到原来的1/keep_prob倍,默认情况下,每个神经元是否被抑制是相互独立的

一般规则

当输入数据特征相差明显时,用tanh效果很好,当特征相差不明显时用sigmoid效果比较好,sigmoid和tanh作为激活函数需要对输入进行规范化,否则激活后的值进入平坦区,而relu不会出现这种情况,有时也不需要输入规范化,因此85%-90%的神经网络会使用relu函数

损失函数

sigmoid_cross_entropy_with_logits函数

tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None)

该函数不仅可以用于二分类,也可以用于多分类,例如:判断图片中是否包含几种动物中的一种或多种

二分类logstic损失函数梯度推导

二项逻辑斯蒂回归模型是一种分类模型,由条件概率p(y|x)表示,形式未参数化的逻辑斯蒂分布,这里的变量X为实数,随机变量y取值为1或0,逻辑斯蒂模型条件概率分布如下:$$p(y=1|x) = \frac{\exp(w{\bullet}x+b)}{1+\exp(w{\bullet}x+b)}$$

\[p(y=0|x) = \frac{1}{1+\exp(w{\bullet}x+b)} \]

假设$$p(y = 1|x) = \theta(x),p(y=0|x) = 1 – \theta(x)$$
损失函数:$$L(\theta(x)) = -\prod_{i=1}N[\theta(x_i)]{y_i}[1-\theta(x_i)]^{1-y_i}$$
对数似然函数:$$L(\theta(x)) = -\sum_{i=1}^Ny_i * \log\theta(x_i)+(1-y_i)\log(1-\theta(x_i))$$
\(L(\theta(x))\)的极大值,得到w的估计值,由于\(L(\theta(x))\)为凸函数,可以直接求损失函数的一阶偏导:

\[\frac{\delta{L}}{\delta{w_j}} = -\sum_{i=1}^N[y_i*\frac{1}{\theta(x_i)} – (1-y_i)*\frac{1}{1-\theta(x_i)}] *\frac{\delta{\theta(x)}}{\delta{w_j}} \]

由于\(\frac{\delta{\theta(x)}}{\delta{w}} = \theta(x_i) * (1 – \theta(x_i))*x_j^i\)
得到:$$\frac{\delta{L}}{\delta{w_j}} = -\sum_{i=1}N(y_i-\theta(x_i))*x_ji$$

weighted_cross_entropy_with_logits函数

tf.nn.weighted_cross_entropy_with_logits(targets,logits,pos_weight,name=None)

pos_weight正样本的一个系数

该函数在sigmoid_cross_entropy_with_logits函数的基础上为每个正样本添加了一个权重,其损失函数如下:

\[loss_{ij} = -[post_{weight}p_{ij}\log p_{ij}+(1-p_{ij})\log (1-p_{ij})] \]

softmax_cross_entropy_with_logits函数

tf.nn.softmax_cross_entropy_with_logits(_sentinel,labels,logits,name)

适用于每个类别相互独立且排斥的情况,例如,判断的图片只能属于一个种类而不能同时包含多个种类

损失函数:

\[logits_{ij} = \frac{e^{logits_{ij}}}{\sum_{j=0}^{numclass-1}e^{logits_{ij}}} \]

\[loss_{i} = -\sum_{j=0}^{numclass-1}label_{ij}\log (logits_{ij}) \]

sparse_softmax_cross_entropy_with_logits函数

tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel,labels,logits,name)

该函数与softmax_cross_entropy_with_logits的唯一区别在于labels,该函数的标签要求排他性的即只有一个正确类型,labels的形状要求是[batch_size]而值必须是从0开始编码的int32或int64,而且范围是[0,num_class],该函数没用过
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/120026.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • python 构造生产者消费者模型

    python 构造生产者消费者模型

    2021年11月11日
  • Android实现视频播放的3种实现方式[通俗易懂]

    Android实现视频播放的3种实现方式[通俗易懂]Android提供了常见的视频的编码、解码机制。使用Android自带的MediaPlayer、MediaController等类可以很方便的实现视频播放的功能。支持的视频格式有MP4和3GP等。这些多媒体数据可以来自于Android应用的资源文件,也可以来自于外部存储器上的文件,甚至可以是来自于网络上的文件流。下面来说一下视频播放的几种实现方式:1、MediaController+Vid…

  • CentOS7怎么保存退出vi编辑

    CentOS7怎么保存退出vi编辑CentOS7怎么保存退出vi编辑(转自阿里云)保存命令按ESC键跳到命令模式,然后::w保存文件但不退出vi:wfile将修改另外保存到file中,不退出vi:w!强制保存,不推出vi:wq保存文件并退出vi:wq!强制保存文件,并退出viq:不保存文件,退出vi:q!不保存文件,强制退出vi:e!放弃所有修改,从上次保存文件开始再编辑…

  • linux 刷流量ip,程序员同事问shell脚本刷流量,不讨巧帮他填了一个巨坑

    linux 刷流量ip,程序员同事问shell脚本刷流量,不讨巧帮他填了一个巨坑程序员同事闲来无事问我可以用shell脚本写个刷微博访问量的没。于是脑海里想起了病毒营销或者fork×××这些词。依稀操刀稀松吧啦的写了起来。并测试了下,脚本内容是下面这样的:脚本跑起来的样子当然仅仅是为了展示shell脚本威力。当然还是希望大家靠实际的阅读量。拿微信公众号来说,刷量增粉的很多。同样笔者手里也有些软件。但一次都没有使用过。以来防止被中马,二来做人如果都急功近利.光追求虚妄的东西而没…

  • mysql搜索引擎

    mysql搜索引擎mysql搜索引擎

  • windbg使用详解_市场配置资源的基础是什么

    windbg使用详解_市场配置资源的基础是什么WinDbg配置和使用基础

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号