机器学习降维之线性判别分析

1.LDA描述线性判别分析(LinearDiscriminantAnalysis,LDA)是一种有监督学习算法,同时经常被用来对数据进行降维,它是RonaldDisher在1936年发明的,

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

1. LDA描述

线性判别分析(Linear Discriminant Analysis,LDA)是一种有监督学习算法,同时经常被用来对数据进行降维,它是Ronald Disher在1936年发明的,有些资料上也称位Fisher LDA.LDA是目前机器学习、数据挖掘领域中经典且热门的一种算法

相比于PCA,LDA可以作为一种有监督的降维算法,在PCA中,算法没有考虑数据的类别,自己把原数据映射到方差较大的方向上而已

如下图,红色的点代表class1类别的数据,蓝色代表class2的数据,根据PCA算法,数据应该映射到方差最大的方向,即Y轴,但是class1和class2两个不同类别的数据就会完全的混合在一起,很难区分开。所以使用PCA算法进行降维后再进行分类的效果会非常差,这时候就需要我们使用LDA算法,将数据映射到X轴上。下面我们从二分类分析LDA原理

import numpy as np
import matplotlib.pyplot as plt

c1_x = np.random.uniform(-0.5,-2,100)
c1_y = np.random.uniform(-10,10,100)

c2_x = np.random.uniform(0.5,2,100)
c2_y = np.random.uniform(-10,10,100)

l1_x = [0 for _ in range(24)]
l1_y = [i for i in range(-12,12,1)]
l2_x = [i for i in range(-4,5,1)]
l2_y = [0 for _ in range(9)]

plt.scatter(c1_x,c1_y,c = 'r',marker = 'o',label='class1')
plt.scatter(c2_x,c2_y,c = 'b',marker = '*',label='class2')
plt.plot(l1_x,l1_y,'black',label='X')
plt.plot(l2_x,l2_y,'g',label='Y')
plt.legend()
plt.xlim(-5, 5)
plt.ylim(-12, 12)
plt.show()

机器学习降维之线性判别分析

2. 从二分类分析LDA原理

先抛出LDA原理中心思想:最大化类间距离和最小化类内距离,再进行说明

从一个简单的二分类问题出发,有C1、C2两个类别的样本,两类的均值分别\(\mu_1,\mu_2\),我们希望投影之后两类之间的距离尽可能大$$D(C1,C2) ={ ||W^T\mu_1 – WT\mu_2||}_22$$
注:\(W^T\mu_1为\mu_1再W方向上的投影向量\),从而转化为以下优化问题

\[\begin{cases} max{ ||W^T\mu_1 – W^T\mu_2||}_2^2\\ s.t. W^TW = 1 \end{cases}\]

容易发现,当W与\((\mu_1 – \mu_2)\)方向一致的时候,该距离最大

机器学习降维之线性判别分析

上面左边的图是按照最大化两类投影中心距离的准则绘制的,会发现原本可以被线性划分的两类样本,经过投影后又了一定程度的重叠

上面右边的图就是按照最大类间距,最小类内距思想绘制的,虽然两类的中心在投影之后的距离又所减小,但确使投影之后样本的可区分性提高了

如何表示类内距离?可以使用类内方差,类内方差定义为各个类分别的方差和,有类内距离表示再结合上图说明,继续对上面的优化函数进行优化得到:

\[\begin{cases} maxJ(W) = \frac{{ ||W^T\mu_1 – W^T\mu_2||}_2^2}{D1 + D2}\\ s.t. W^TW = 1 \end{cases}\]

注:D1为C1的类内方差和,D2为C2的类内方差和

3. LDA求解方法

\[\begin{cases} maxJ(W) = \frac{{ ||W^T\mu_1 – W^T\mu_2||}_2^2}{D1 + D2}\\ s.t. W^TW = 1 \end{cases}\]

\[D1 = \sum_{x\epsilon C_1}{(W^T(x_i – \mu_1))}^2 = \sum_{x\epsilon C_1}W^T(x_i – \mu_1){(x_i – \mu_1)}^TW \]

\[D2 = \sum_{x\epsilon C_2}{(W^T(x_i – \mu_2))}^2 = \sum_{x\epsilon C_2}W^T(x_i – \mu_2){(x_i – \mu_2)}^TW \]

因此J(W)可以写成:

\[J(W) = \frac{W^T(\mu_1 – \mu_2){(\mu_1 – \mu_2)}^TW}{\sum_{x\epsilon C_i}W^T(x – \mu_i){(x – \mu_i)}^TW} \]

定义类间距离\(S_B = (\mu_1 – \mu_2){(\mu_1 – \mu_2)}^T\),类内距离\(S_W = \sum_{x\epsilon C_i}(x – \mu_i){(x – \mu_i)}^T\)

则:$$J(W) = \frac{WTS_BW}{WTS_WW}$$

对W求导,并令导数为0

\[(W^TS_W W)S_B W = (W^T S_B W)S_W W \]

\(\lambda = J(W) = \frac{W^TS_BW}{W^TS_WW}\)则有:

\[S_B W = \lambda S_w W \]

整理得到:

\[{S_w}^{-1}S_BW = \lambda W \]

看到这里就以及很清楚了,我们最大化目标对应一个矩阵的特征值,于是LDA降维变成了一个求矩阵特征向量的问题。\(J(W)\)就对应矩阵\({S_w}^{-1}S_B\)的最大的特征值,而投影方向就是这个特征值对应的特征向量

将二分类推广到多分类也得到同样的结论,总结具有多个列别标签高维的LDA求解方法:

  • (1)计算数据集中每个类别样本的均值向量\(\mu_j\),以及总体均值向量\(\mu\)
  • (2)计算类内散度矩阵\(S_W\),全局散度矩阵\(S_T\),并得到类间散度矩阵\(S_B = S_T – S_W\)
  • (3)对矩阵\({S_W}^{-1}S_B进行特征值分解,将特征值从大到小排列\)
  • (4)特征值前d大的对应的特征向量\(W_1,W_2,…,W_d\),通过以下映射将n维映射到d维:$$\acute{X_i} ={(W_1Tx_i,W_2Tx_i,…,W_dTx_i)}T$$

参考:《百面机器学习》

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/120012.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • selenium自动化测试实战基于python_初级java工程师要求

    selenium自动化测试实战基于python_初级java工程师要求一、Selenium介绍Selenium是什么?一句话,自动化测试工具。它支持各种浏览器,包括Chrome,Safari,Firefox等主流界面式浏览器,如果你在这些浏览器里面安装一个Selenium的插件,那么便可以方便地实现Web界面的测试。Selenium2,又名WebDriver,它的主要新功能是集成了Selenium1.0以及WebDriver(WebDr…

  • Linux命令之tail – 输出文件尾部/动态监视文件尾部

    Linux命令之tail – 输出文件尾部/动态监视文件尾部本文链接:http://codingstandards.iteye.com/blog/832575  (转载请注明链接)用途说明tail命令可以输出文件的尾部内容,默认情况下它显示文件的最后十行。它常用来动态监视文件的尾部内容的增长情况,比如用来监视日志文件的变化。与tail命令对应的是head命令,用来显示文件头部内容。 常用参数格式:tailfile

  • Linux 安装tomcat 部署war包项目

    Linux 安装tomcat 部署war包项目准备工作:jdk-8u161-linux-x64.tar.gz链接:https://pan.baidu.com/s/1zQGL_cfN5jFWshZkAJOkNw密码:0u7dapache-tomcat-9.0.20.zip链接:https://pan.baidu.com/s/1Nf_qdmUVlQ0Cz8BOoQg2rA密码:bh9f以及你的war包…

  • MySQL常用命令大全(完整)

    MySQL常用命令大全(完整)打开Linux或MacOS的Terminal(终端)直接在终端中输入windows快捷键win+R,输入cmd,直接在cmd上输入1、mysql服务的启动和停止netstopmysqlnetstartmysql启动失败可按快捷键win+R,输入services.msc,找到MySQL服务器的名称启动2、登陆mysqlmysql(…

  • java打印数组常用的几种方法[通俗易懂]

    java打印数组常用的几种方法[通俗易懂]java打印数组常用的几种方法1、使用for循环最”朴实无华“的方法,却也是屡试不爽的方法,直接打印变量名不成,逐个遍历打印一定是可以的!int[]intArray={1,2,3};for(inti=0;i<intArray.length;i++)System.out.println(intArray[i]);如果是多维数组的话,使用多层for循环嵌套就可以了。2、使用Arrays.toString()或Arrays.deepToString()对

  • cultureinfo 类 java_System.Globalization.CultureInfo.cs(示例代码)

    cultureinfo 类 java_System.Globalization.CultureInfo.cs(示例代码)#region程序集mscorlib,Version=4.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089//C:ProgramFiles(x86)ReferenceAssembliesMicrosoftFramework.NETFrameworkv4.6.1mscorlib.dll#endregionusingSystem…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号