ID3具有一定的局限性,即信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后的类别变量的熵)越小,信息增量就越大),C4.5通过选择最大的信息增益率 gain ratio 来选择节点可以解决该问题。并且C4.5算法可以处理连续和有缺失值的数据。
C4.5与ID3在实现过程中,不同之处在于将计算信息增益的函数改为计算信息增益率。
譬如,对于上一个例子中的湿度这一项的取值改为:
Day |
Outlook |
Temperature |
Humidity |
Wind |
PlayTennis |
1 |
Sunny |
Hot |
85 |
Weak |
No |
2 |
Sunny |
Hot |
90 |
Strong |
No |
3 |
Overcast |
Hot |
78 |
Weak |
Yes |
4 |
Rain |
Mild |
96 |
Weak |
Yes |
5 |
Rain |
Cool |
80 |
Weak |
Yes |
6 |
Rain |
Cool |
70 |
Strong |
No |
7 |
Overcast |
Cool |
65 |
Strong |
Yes |
8 |
Sunny |
Mild |
95 |
Weak |
No |
9 |
Sunny |
Cool |
70 |
Weak |
Yes |
10 |
Rain |
Mild |
80 |
Weak |
Yes |
11 |
Sunny |
Mild |
70 |
Strong |
Yes |
12 |
Overcast |
Mild |
90 |
Strong |
Yes |
13 |
Overcast |
Hot |
75 |
Weak |
Yes |
14 |
Rain |
Mild |
80 |
Strong |
No |
Gain(Wind) = Entropy(S) – (8/14)* Entrogy(weak)-(6/14)* Entrogy(strong) = 0.048
weak = 8;Strong = 6
Feature(Wind) = -8/14*log(8/14)-6/14*log(6/14) = 0.9852
RatioGain(Wind) = Gain(Wind)/Feature (Wind) = 0.0487
同理:RatioGain(Outlook) = 0.247/1.577 = 0.1566
RatioGain(Temperature)= 0.029/1.556 = 0.018
其中,对于连续值的计算:
1. 对特征的取值进行升序排序
2. 两个特征取值之间的中点作为可能的分裂点,将数据集分成两部分,计算每个可能的分裂点的信息增益(InforGain)。优化算法就是只计算分类属性发生改变的那些特征取值。
3. 选择修正后信息增益(InforGain)最大的分裂点作为该特征的最佳分裂点
4. 计算最佳分裂点的信息增益率(Gain Ratio)作为特征的Gain Ratio。注意,此处需对最佳分裂点的信息增益进行修正:减去log2(N-1)/|D|(N是连续特征的取值个数,D是训练数据数目,此修正的原因在于:当离散属性和连续属性并存时,C4.5算法倾向于选择连续特征做最佳树分裂点)
故,划分为:{ 65、70、75、78、80、85、90、95、96 } 这几个特征。
|
65 |
70 |
75 |
78 |
80 |
85 |
90 |
95 |
96 |
|||||||||
|
≤ |
> |
≤ |
> |
≤ |
> |
≤ |
> |
≤ |
> |
≤ |
> |
≤ |
> |
≤ |
> |
≤ |
> |
Yes |
1 |
8 |
3 |
6 |
4 |
5 |
5 |
4 |
7 |
2 |
7 |
2 |
8 |
1 |
8 |
1 |
9 |
0 |
No |
0 |
5 |
1 |
4 |
1 |
4 |
1 |
4 |
2 |
3 |
3 |
2 |
4 |
1 |
5 |
0 |
5 |
0 |
Entropy |
0 |
0.961 |
0.811 |
0.971 |
0.722 |
0.991 |
0.65 |
1 |
0.764 |
0.971 |
0.881 |
1 |
0.918 |
1 |
0.961 |
0 |
0.94 |
0 |
Gain |
0.048 |
0.015 |
0.045 |
0.090 |
0.102 |
0.025 |
0.011 |
0.048 |
0 |
此时,可以看到当特征小于等于80时,信息增益最大,选取该取值区间作为湿度属性的信息增益。
即Gain(Humidity) = 0.102
Feature(Humidity) = -9/14*log(9/14) – 5/14*log(5/14) = 0.940(两个分支,大于80的和小于等于80的)
RatioGain(Humidity) = 0.102/0.940 = 1.085
//————————————————
对于ID3算法局限性的理解:
X = [['sunny', 'hot', 'h_85', 'weak'], ['sunny', 'hot', 'h_90', 'strong'], ['overcast', 'hot', 'h_78', 'weak'], ['rain', 'mild', 'h_96', 'weak'], ['rain', 'cool', 'h_80', 'weak'], ['rain', 'cool', 'h_70', 'strong'], ['overcast', 'cool', 'h_65', 'strong'], ['sunny', 'mild', 'h_95', 'weak'], ['sunny', 'cool', 'h_70', 'weak'], ['rain', 'mild', 'h_80', 'weak'], ['sunny', 'mild', 'h_70', 'strong'], ['overcast', 'mild', 'h_90', 'strong'], ['overcast', 'hot', 'h_75', 'weak'], ['rain', 'mild', 'h_80', 'strong'], ]
对于ID3算法的输入改为,可以看到生成的决策树为:
可以看到,此时就会出现过拟合的现象。
而采用信息增益率作为判决条件的话:
estimator = Id3Estimator(gain_ratio=1)
获得的决策树为:
因此,对于使用信息增益作为分类准则和使用信息增益率的区别如上所示。
//———————————–
对于处理数值的理解:
解读python的第三方库,ID3模块(decision-tree-id3)
在其中id3.py模块中:
Id3Estimator类的fit函数中
for i in range(self.n_features): if check_input and check_numerical_array(X_[:, i]): self.is_numerical[i] = True X_tmp[:, i] = X_[:, i] else: X_tmp[:, i] = self.X_encoders[i].fit_transform(X_[:, i])
这里会判断一下传递的特征是名字还是数字,判断的方法在checks.py中:
def check_numerical_array(array): """ Check if all values in a 1d array are numerical. Raises error if array is more than 1d. Parameters ---------- array : nparray containing the class names Returns ------- result : bool True if all values in array are numerical, otherwise false """ try: if array.ndim > 1: raise ArithmeticError("Found array with dim {}. Expected = 1." .format(array.ndim)) array.astype(np.float64) return True except ValueError: return False
此处会做一个类型转换,如果输入的是数字、字符串形式的数字都会被转为float类型。
(此次我觉得不太妥当,字符串形式的数字不应该转化为数字,说不定人家就是想这样输入作为feature呢,譬如我上面的输入数字的开头还要加一个 ‘h_’)
当特征为数字的时候计算方法在splitter.py文件中:
def _info_numerical(self, x, y): """ Info for numerical feature feature_values sort values then find the best split value Parameters ---------- x : np.array of shape [n remaining examples] containing feature values y : np.array of shape [n remaining examples] containing relevent class Returns ------- : float information for remaining examples given feature : float pivot used set1 < pivot <= set2 """ n = x.size sorted_idx = np.argsort(x, kind='quicksort') sorted_y = np.take(y, sorted_idx, axis=0) sorted_x = np.take(x, sorted_idx, axis=0) min_info = float('inf') min_info_pivot = 0 min_attribute_counts = np.empty(2) for i in range(1, n): if sorted_x[i - 1] != sorted_x[i]: tmp_info = i * self._entropy(sorted_y[0: i]) + \ (n - i) * self._entropy(sorted_y[i:]) if tmp_info < min_info: min_attribute_counts[SplitRecord.LESS] = i min_attribute_counts[SplitRecord.GREATER] = n - i min_info = tmp_info min_info_pivot = (sorted_x[i - 1] + sorted_x[i]) / 2.0 return CalcRecord(CalcRecord.NUM, min_info * np.true_divide(1, n), pivot=min_info_pivot, attribute_counts=min_attribute_counts)
可以看到,其计算过程和上述对于数值的计算过程一样,其min_info为选取的最小的分类后的信息熵,为了得到最大的信息增益。
而对于是否使用信息增益率的判断在splitter.py文件中:
def _is_better(self, calc_record1, calc_record2): """Compares CalcRecords using gain ratio if present otherwise using the information. Parameters ---------- calc_record1 : CalcRecord calc_record2 : CalcRecord Returns ------- : bool if calc_record1 < calc_record2 """ if calc_record1 is None: return True if calc_record2 is None: return False if self.gain_ratio: if calc_record1.gain_ratio is None: calc_record1.gain_ratio = self._gain_ratio(calc_record1) if calc_record2.gain_ratio is None: calc_record2.gain_ratio = self._gain_ratio(calc_record2) if self._is_close(calc_record1.gain_ratio, calc_record2.gain_ratio): return calc_record1.info > calc_record2.info else: return calc_record1.gain_ratio < calc_record2.gain_ratio else: return calc_record1.info > calc_record2.info
故,对于C4.5算法,同样可以使用ID3模块,只不过设置参数:gain_ratio=True即可。
得到的决策树为:
下面我们验证在sunny情况下,humidity的划分便准是否正确:
Day |
Outlook |
Temperature |
Humidity |
Wind |
PlayTennis |
1 |
Sunny |
Hot |
85 |
Weak |
No |
2 |
Sunny |
Hot |
90 |
Strong |
No |
8 |
Sunny |
Mild |
95 |
Weak |
No |
9 |
Sunny |
Cool |
70 |
Weak |
Yes |
11 |
Sunny |
Mild |
70 |
Strong |
Yes |
首先计算humidity:
|
70 |
85 |
90 |
95 |
||||
|
≤ |
> |
≤ |
> |
≤ |
> |
≤ |
> |
Yes |
2 |
0 |
2 |
0 |
2 |
0 |
2 |
0 |
No |
0 |
3 |
1 |
2 |
2 |
1 |
3 |
0 |
Entropy |
0 |
0 |
0.756 |
0 |
0.846 |
0 |
0.971 |
0 |
Gain |
0.971 |
0.517 |
0.294 |
0 |
Gain(humidity) = 0.971
Feature(humidity) = -2/5*log(-2/5) – 3/5*log(3/5) = 0.971(分两组,小于等于70的有2个数据,大于70的有3个数据)
RatioGain(humidity) = 1
Gain(Temperature) = 0.971 – (-log(0.5) * 2/5) = 0.571
Feature(Temperature) = -2/5*log(-2/5)*2 – 1/5*log(1/5) = 1.522(分三组,分别有2、2、1个数据)
RatioGain(Temperature) = 0.375
Gain(Wind) = 0.971 – (3/5*(-1/3*log(1/3)-2/3*log(2/3)) + 2/5( -1/2*log(1/2)-1/2*log(1/2)))= 0.02
Feature(Wind) = 0.971
RatioGain(Wind) = 0.02
因此,程序得到的结果是对的。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/119483.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...