预测功率和电流之间的关系

预测功率和电流之间的关系

通常机器学习的开发流程包括:数据收集—数据清洗与转换—模型训练—模型测试—模型部署与整合

下面,通过一个例子进行完整的机器学习开发流程的学习。

工程中需要的库:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.externals import joblib

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
from pandas import DataFrame

  

(1)首先数据的收集,获取数据:

<span>预测功率和电流之间的关系</span>

如上,可以看到,我们获得需要获取的是Global_active_power(有功功率)、Global_reactive_power(无功功率)和Global_intensity(电流)之间的关系。

path = 'household_power_consumption_1000.txt'
df = pd.read_csv(path,sep = ';',low_memory = False)

print(df.head())
print(df.info())

  

(2)然后进入数据清洗阶段

<span>预测功率和电流之间的关系</span>

如上, 如果存在空值或异常值的情况,我们可以在这个阶段进行处理。

new_df = df.replace('?',np.nan)
datas = new_df.dropna(axis = 0,how = 'any')
print(datas.describe().T)

  如上,可以看到,我们对于异常值和空值存在的情况下,直接删掉了该样本。

<span>预测功率和电流之间的关系</span>

可以看到,1000个样本只剩下了998个了。

然后继续进行特征工程处理:

#提取出相关数据
X = datas.iloc[:,2:4]
Y = datas['Global_intensity']
#划分训练集和测试集
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.2,random_state = 0)
#标准化处理
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

 Tips: 

  • random_state:是随机数的种子。随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。
  • StandardScaler:标准化需要计算特征的均值和标准差,公式表达为:<span>预测功率和电流之间的关系</span>。至于为什么要做标准化,https://zhuanlan.zhihu.com/p/24839177

 

 

 (3)模型训练

lr = LinearRegression()
lr.fit(X_train,Y_train)

  如上,我们可以通过sklearn封装好的简单的语句完成模型的训练。

(4)模型预测

y_predict = lr.predict(X_test)
print("训练:",lr.score(X_train,Y_train))#
print("测试:",lr.score(X_test,Y_test))

mse = np.average((y_predict-Y_test)**2)
rmse = np.sqrt(mse)
print(rmse)

  如上:score是一个评分函数,即R2

<span>预测功率和电流之间的关系</span>

数据的可视化:

## 设置字符集,防止中文乱码
mpl.rcParams['font.sans-serif']=[u'simHei']
mpl.rcParams['axes.unicode_minus']=False
t = np.arange(len(X_test))
plt.figure()
plt.plot(t,Y_test,'r-',label = u'真实值')
plt.plot(t,y_predict,'b-',label = u'预测值')
plt.legend(loc = 'upper right')
plt.title(u'线性回归预测功率与电流之间的关系')
plt.grid(b = True)
plt.show()

  对于Anaconda2和3同时装的情况下,执行3可以采用下面命令:

<span>预测功率和电流之间的关系</span>

 

 <span>预测功率和电流之间的关系</span>

(5)模型部署

joblib.dump(lr,"data_lr.model")

lr = joblib.load("data_lr.model")

  如上,可以将训练好的模型存下来,以后用的时候load进来即可。

 

PS:当然这里的模型选择也可以选择其他算法,譬如SVR

模型构建步骤改为:

rbf=svm.SVR(kernel='rbf',C=1, )
rbf.fit(X_train,Y_train)

  当然,这里的话就需要调参了

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/119458.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • virtualenv技巧

    virtualenv技巧

  • 删除数组中某个指定元素的值_如何删除数组中的元素

    删除数组中某个指定元素的值_如何删除数组中的元素首先可以给JS的数组对象定义一个函数,用于查找指定的元素在数组中的位置,即索引,代码为:Array.prototype.indexOf=function(val){for(vari=0;i<this.length;i++){if(this[i]==val)returni;}return-1;};然后使用通过得到这个元素的索引,使用js数组自己固有的函数去删除这个元素:Array.prototype.remove=function(va

  • MATLAB画函数图像

    MATLAB画函数图像1画图基础(1)一元一次函数x=0:0.1:1;y=x;plot(x,y);%图像见下图1图1…

  • springboot配置文件的属性集[通俗易懂]

    springboot配置文件的属性集[通俗易懂]springboot配置文件的属性集

  • idea2019激活码(已测有效)

    idea2019激活码(已测有效),https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • maven使用入门[通俗易懂]

    maven使用入门[通俗易懂]maven面临的问题一个项目就是一个工程。如果项目非常大,最好是每一个模块对应一个工程。借助maven可以将一个项目拆分成多个工程项目中需要的jar必须要手动”复制”,”粘贴”到WEB-INF/lib目录下,带来的问题是:同样的jar包文件重复出现在不同的项目工程中,浪费空间。maven可以将jar仅仅保存在”仓库”中,有需要使用的工程”引用”这个文件接口,并不需要真的把jar包复制过来jar包需要别人替我们准备好,或到官网下载。不同技术的官网提供jar包下载的形式是五花八门的,有些技术的官网就是

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号